DEVELOPMENT OF CATHODE MATERIAL WITH LANGBEHNITE STRUCTURE FOR SODIUM-ION BATTERIES
Keywords:
cathode, electrochemical substitution, langbeinite, sodium-ion batteriesAbstract
The aim of this work is to obtain a double salt of sodium manganese (II) sulfate with the structure of langbainite through electrochemical polarization, for further use as a cathode material for sodium-ion batteries. The synthesized double potassium sulfate-manganese (II) sulfate of the langbeinite structure acted as the initial salt. The main task was to replace potassium with sodium without disturbing the structure of the crystal lattice. A material of high purity langbainite structure was synthesized, which is confirmed by the results of x-ray phase analysis. Scanning electron microscopy showed that several microns in size were present in the sample. It was found that potassium deintercalation to some extent occurs on the first polarization cycle, while the intercalation of sodium ions into the structure is complicated and occurs to a small extent in the working window of the potential. Thus, a potentially new way of developing a cathode material for sodium-ion batteries was considered.
References
[1] Duan' B.F., Andebet G.T., Liumin S., Jonggang V., CHun'shen V., YUn"yao H. Progress v sozdaniivodno-ionno-perezaryazhaemyh ionno-natrievyh akkumulyatorov // Perspektivnye energeti-cheskie materialy. 2018. 1703008. P. 1-31.
[2] Klod D. Sredinatrievyh i natrievo-ionnyh akkumulyatorov: 50 let issledovanij // Peredovye energeticheskie materialy. 2018. 1703137. P. 1-9.
[3] Brajan L.E., Linda F.N. Natrievye i natrievo-ionnye akkumulyatory // Sovremennoemnenie v oblasti tverdogo tela i materialovedeniya. 2012. 16. P. 168-177.
[4] Dipan K., Daffort V., Linda F.N. Novaya himiya ionno-natrievyh akkumulyatorov dlya hraneniya elektrohimicheskoj energii // Obzory Angevandte. 2015. 54. P. 2-20.
[5] Lander L., Ruse G., Batuk D., Kolin K., Alves D., Korte D., ZHan-Mari Taraskon. Sintez, struktura i elektrohimicheskie svojstva K – na osnove sul'fatov K2M2(SO4)3 s M = Fe i Cu // Neorganicheskaya himiya. 2017. 56. P. 2013-2021.
[6] Suamti A., Kahlaui M., Mohammed B., Diego Lozano-Gorrin A., D.B.H. Chehimi. Sintez, strukturnye i elektrohimicheskie svojstva novoj legirovannoj itterbiem keramiki langbejnita // Mezhdunarodnaya keramika. 2017. Vol. 43. P. 0939-10947.
[7] Sakai A., Inagaki T., Moriyosi S., Ito K. Mikro-kombinacionnoe kartirovanie fazovogo perekhoda v K2Mn2(SO4)3 // Segnetoelektriki. 2002. P. 27-32.
[8] Devaradzhan V., Sal'e E. Fazovye perekhody v langbejnitah II: Ramanovskie spektroskopicheskie issledovaniya K2Cd2(SO4)3 // Fizika i himiya mineralov. 1986. Vol. 13(1). P. 25-30.
[9] Zemann A., Zemann Dzh. Kristallicheskaya struktura langbejnita K2Mg2(SO4)3 // Acta Kristallografiya. 1957. Vol. 10. P. 409-413.
[10] Trusov I.A., Driskoll L.L., Male L.L., Sandzhuan M.L. Orera A., Slejter P.R. Sintez i struktury natrijsoderzhashchih faz langbeinita K2-xNaxMg2(SO4)3 // Zhurnal himii tverdogo tela. 2019. 276. P. 37-46.