MODIFIED POLYETHYLENE POLYAMINE AND EPOXY RESIN SCHUNGITE FOR THE EXTRACTION OF LEAD IONS FROM WASTEWATER

Authors

  • E. A. Kambarova Abai Kazakh National Pedagogical University
  • N. A. Bektenov Abai Kazakh National Pedagogical University
  • M. A. Gavrilenko the National Research Tomsk Polytechnic University

Keywords:

shungite, sorption, lead ions, polyethylene polyamine, epoxy

Abstract

The development of effective and inexpensive sorbents of a wide profile is an urgent problem. In this regard, it is necessary to use new modified ion exchangers used for wastewater treatment and control over the content of various substances in the environment. To increase sorption characteristics, modification is performed. Modification of sorbents with improved sorption and kinetic characteristics has great prospects, such as highly permeable cross-linked polyelectrolytes, with a high absorption rate of large ions, valuable physicochemical properties, cheap natural minerals modified with polyethylene polyamine and epoxy resins in order to obtain reactive copolymers with epoxy groups, capable of participating in curing reactions in the presence of acid compounds and basic s. New sorbents based on Koksu natural shungite modified with polyethylene polyamine and epoxy resin have been developed for sorption of lead ions. The equilibrium and kinetic parameters of sorption are calculated, the optimal conditions for water purification under static conditions are determined. The sorption properties of natural schungite and its modified polyethylene polyamine (PEPA) and epoxy resin (ED-20) forms with respect to the Pb2+ ion on the pH of the medium, on the contact time and the concentration of the solution are determined. Sorption capacity under static conditions is 0.45 mg/g of sorbent. The research is due to the need for wastewater treatment of metallurgical enterprises from Pb2+ ions. Lead compounds are harmful substances that exhibit mutagenic, carcinogenic properties. Modified natural shungite can be used as a sorption material for the treatment of industrial and waste water.

References

[1] https://www.who.int/ipcs/assessment/public_health/lead/en/.

[2] United Nations, Environment Programme, Final review of scientific informationon lead, Chemicals Branch, Division of Technology, Version of, Industry and Economics, December 2010.

[3] B. Volesky, Detoxification of metal-bearing effluents: biosorption for the next century, Hydrometallurgy 59 (2001) 203–216.

[4] L. Deng, Y. Su, H. Su, X. Wang, X. Zhu, Biosorption of copper(II) and lead(II) from aqueous solutions by nonliving green algaeCladophorafascicularis: equilibrium, kinetics and environmental effects, Adsorption 2 (2006) 267–277.

[5] King P., Rakesh N., Beenalahari S., Prasanna Y., Kumar, Removal of lead from aqueous solution using Syzygiumcumini L.: equilibrium and kinetic studies, J. Hazard. Mater. 142 (2007) 340–347.

[6] Eckhard Worch, Adsorption Technology in Water Treatment, Walter de Gruyter GmbH & Co. KG, Berlin/Boston 2012, e-ISBN: 978–3–11–024023-8.

[7] Y.K. Siong, J. Idris, M. Atabaki, Performance of activated carbon in water filters, Water Resources (2013) 1–19.

[8] A. Alsbaiee, B.J. Smith, L. Xiao, Y. Ling, D.E. Helbling, W.R.. Dichtel, Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer, Nature 529 (7585) (2016) 190.

[9] АкимбаеваAM., E.E. Ергожин, А.Б. Садвокасова, Шунгитовые породы. Перспективы модификации и возможности использования // Химический журнал Казахстана. – 2003. – № 1. – С. 4Ф66.

[10] R. Martino, Shungite: Protection, Healing, and Detoxification,first ed., Healing Arts Press, 2014.

[11] I.A. Kovalevski, V.V. Moshnikov, TEM study of structure of graphene layers in shungite carbon, Nanosyst: Phys. Chem. Math. 7 (2016) 210e213.

[12] N.N. Sheka, E.F. Rozhkova, Shungite as the natural pantry of nanoscale reduced graphene oxide, Int. J. Smart Nano Mater. 5 (2014) 1e16.

[13] Тукгамышев И.Ш., Туктамышев И.И., Калинин Ю.К, Селезнев АН., Гнедин Ю.Ф. Свойства шунгитовых пород Карелии и перспективность их технологического использования // Химия твердого топлива. – 2001. – № 1. – С. 80-89.

[14] Ефремова СВ., Королев Ю.М., Наурызбаев М.К., Ефремов СА Структура казахстанского шунгита // Химия твердого топлива. – 2003. – № 1. – С. 11-20.

[15] Бартновский В.И., Кривушина Л.Е. Коксуйскиешунгиты - первый опыт применения в классической альтернативной медицине и защите человека от вредного воздействия аномальных (геопатогенных) зон природного и техногенного происхождения // Вестник качества для предпринимателей, бизнесменов, товаропроизводителей: Ежекварт. информ.-справ. бюл. – Алматы, 1999. – Вып. 2. – С. 10-1.

[16] Oleg Mosin., IgnatIgnatov. The structure and composition of natural carbonaceous fullerene containing mineral shungite // International Journal of Advanced Scientific and Technical Research. 2013. Issue 3, vol. 6 (Nov.-Dec.). P. 9-21.

[17] Луговская И.Г., Ануфриева СИ.,Герцева Н.Д, Крылова АВ. Глубокая очистка водных растворов от фенола с использованием шунгитовой породы // Журн. прикл. химии. – 2003. – Т. 76, вып. 5. – С. 791-794.

[18] Н.А. Самойлов, Р.Н.Хлесткин, А.В. Шеметов, А.А Шаммазов. Сорбционный метод ликвидации нефти и нефтепродуктов: Учебное пособие. – М.: Химия, 2001. – 190 с.

[19] Ultra-trace determination of lead in water and food samples by using ionic liquid-based single drop microextractionelectrothermal atomic absorption spectrometry / J.L. Manzoori, M. Amjadi, J. Abulhassan // Anal. Chim. – 2009. – Acta 644. – Р. 48–52.

[20] Simultaneous pre-concentration procedure for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry / L.A. Por-tugal, H.S. Ferreira, W.N.L. dos Santos, S.L.C. Ferreira // Microchem. – 2007. – J. 87. – Р. 77–80.

[21] Hydrogen peroxide in basic media for whole blood sample dissolution for determination of its lead content by electrothermal atomization atomic absorption spectrometry / J. Biasino, J.R. Domínguez, J. Alvarado // Talanta 73. – 2007. – Р. 962–964.

[22] Comparison Between the Calibration and the Standard Addition Methods in Determining Dissolved Lead in Borobudur's Control Tanks Water by Flame Atomic Absorption Spectrophotometry (F-AAS) / I. Sulistyaningrum, M. P.Gitutami, R. B. Istiningrum, I. M. Siregar // Procedia Chemistry. – 2015. – Vol. 17. – Р. 70-74.

[23] Determination of lead in environmental waters with dispersive liquid–liquid microextraction prior to atomic fluorescence spectrometry / Zhou, Q., Zhao, N., &Xie, G. // Journal of Hazardous Materials. – 2011. – Vol. 89 (1–2). – P. 48–53.

[24] Turn-On fluorescence sensor based detection of heavy metal ion using carbon dots @ graphitic-carbon nitride nanocomposite probe / Radhakrishnan, P. Panneerselvam, S. Sivanesan // Journal of Photochemistry and Photobiology A: Chemistry, In press, journal pre-proof, Available online. – 2019. – Article 112204 K.

[25] Orthogonal projection approach and continuous wavelet transform-feed forward neural networks for simultaneous spectrophotometric determination of some heavy metals in diet samples / M.A. Tarighat // Food Chemistry. – 2016. – Vol. 192. – P. 548-556.

[26] ГОСТ 20255.1-89. Иониты. Метод определения статической обменной емкости. – М.: Стандартинформ, 2002. – 5 с.

[27] Chemical analysis of plating solutions / Rosenstein C., Hirsch S. // Metal Finishing. – 2002. – Vol. 100. – P. 509-554.

Published

2021-05-03