RESEARCH OF CHARGE TRANSFER IN LITHIUM CORROSION FILMS FORMED IN LiClO4 SOLUTIONS IN PC/DME MIXTURE

Authors

  • Ya. S. Zhigalyenok Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • A. A. Ametov Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • S. T. Kokhmetova Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • A. K. Galeyeva Non-commercial joint-stock company “Al-Farabi Kazakh National university”

Keywords:

lithium, metal anode, corrosion, charge transfer, metal dendrite, polarization curve

Abstract

The use of lithium metal as an anode for lithium-ion batteries is of particular interest due to its high capacity, which is an order of magnitude higher than the capacity of commercial carbon materials. However, the problem of lithium dendritic formation during cycling is the main problem preventing this. A full understanding of the mechanism of this process would create ways to solve this problem. In this work, the charge transfer processes in lithium corrosion films in a 1M LiClO4 electrolyte in a PC / DME mixture were studied by analyzing the polarization curves on lithium at different times of electrode exposure in the electrolyte. The studies were carried out by the method of micropolarization, which is a voltammetric measurement of short action in a three-electrode electrochemical cell in thermostatically controlled conditions. It was found that with micropolarization the current-voltage characteristic is almost linear and characterizes Ohm's law. At significant polarization intervals and at different potential scan rates, the polarization curves in 1M LiClO4 electrolyte in PC / DME are well approximated by the Butler-Volmer equation. Moreover, the obtained values of the Tafel coefficient of 58 mV completely confirm the charge transfer through the interface, as a limiting stage.

References

[1] R. Xue, H. Huang., X. Huang., L. Chen. Storage study of lithium battery with PEO/PC/LiClO4 electrolyte // Solid State Ionics. – 1994. – Vol. 74. – P. 133-136.

[2] R. Wang., W. Cui., F. Chu., F. Wu. Lithium metal anodes: present and future // Journal of Energy Chemistry. – 2020. – Vol. 48. – P. 145-159.

[3] Кедринский И.А. и др. Химические источники тока с литиевым электродом. – Красноярск: Красноярский ун-т, 1983. – C. 247.

[4] Кедринский И.А., Герасимова Л.К., Шилкин В.И., Шмыдько И.И. Коррозия анода в литиевых источниках тока // Электрохимия. – 1995. – Т. 31, № 4. – С. 365-372.

[5] M. Winter., R. J. Brodd. What are batteries, fuel cells, and supercapacitors? // Chemical Review. – 2004. – Vol. 104. – P. 4245-4269.

[6] R. Selim., P. Bro. Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte // Journal of Electrochemical Society. – 1974. – Vol. 121. – P. 1457.

[7] X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. Ouyang. A review on the key issues of the lithium ion battery degradation among the whole life cycle // eTransportation. – 2019. – Vol. 1. – P. 100005.

[8] K. Nishikawa., T. Sakka., Y. H. Ogata. Measurement of concentration profile during charging of Li battery anode materials in LiClO4-PC electrolyte // Electrochimica Acta. – 2007. – Vol. 53. – P. 218-223.

[9] T. R. Kartha., B. S. Mallik. Revisiting LiClO4 as an electrolyte for Li-ion battery: Effect of aggregation behavior on ion-pairing dynamics and conductance // Journal of Molecular Liquids. – 2020. – Vol. 302. – P. 112536.

[10] K. N. Wood., M. Noked., N. P. Dasgupta. Lithium metal anodes: Toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior // ACS Energy Letters. – 2017. – Vol. 2. – P. 664-672.

[11] M. Dahbi., F. Ghamouss., F. Tran-Van., D. Lemordant., M. Anouti. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage // Journal of Power Sources. – 2011. – Vol. 196. – P. 9743-9750.

[12] T. Doi., R. Masuhara., M. Hashinokuchi., Y. Shimizu., M. Inaba. Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries // Electrochimica Acta. – 2016. – Vol. 209. – P. 219-224.

  1. V. Churikov., I. M. Gamayunova., A. V. Shirokov. Ionic processes in solid-electrolyte passivating films on lithium // Journal of Solid State Electrochemistry. – 2000. – Vol. 4. – P. 216-224.

[13] W. B. Gu., C. Y. Wang., J. W. Weidner., R. G. Jungst., G. Nagasubramanian. Com-putational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow // Journal of Electrochemical Society. – 2000. – Vol. 147. – P. 427.

[14] H.C.K. Han., D. Lamdolt. Rotating disc electrode study of anodic dissolution or iron in concentrated chloride media // Chemical Information. – 1975. – Vol. 6. – P. 32.

[15] F. Zhang, Y. Wang, W. Guo, P. Mao. Yolk-shelled sn@c@mno hierarchical hybrid nanospheres for high performance lithium-ion batteries // Journal of Alloys and Compounds. – 2020. – Vol. 829. – P. 362-374.

[16] L. Li, W. Li, J. Li, Q. Yu. Synthesis of highly monodispersed sno2/carbon nanocomposites for li-ion battery anode // Journal of Nanoscience and Nanotechnology. – 2020. – Vol. 20. – P. 4398-4403.

[17] J. Hong, G. Park, D. Jung, Y. Kang. Lithium ion storage mechanism exploration of copper selenite as anode materials for lithium-ion batteries // Journal of Alloys and Compounds. – 2020. – Vol. 827. – P. 458-469.

[18] S. Suh, H. Choi, K. Eom, H. Kim. Enhancing the electrochemical properties of a si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries // Journal of Alloys and Compounds. – 2020. – Vol. 827. – P. 548-554

[19] J. Zhang, Y.Zhang, S. Huang. BC2N/Graphene Heterostructure as a Promising Anode Material for Rechargeable Li-Ion Batteries by Density Functional Calculations // Journal Of Physical Chemistry C. – 2019. – Vol. 123. – P. 30809-30818.

[20] X. Gui, G. Hao, W. Jiang. A comprehensive review of Cr-,Cr- Ti-based anode materials for Li-ion batteries // Ionics. – 2019. – Vol. 23. – P. 456-468.

Published

2021-05-03