MANUFACTURE OF MEDICAL IMPLANTS FOR OSTEOSYNTHESIS BY INJECTION MOLDING OF BIODEGRADABLE POLYMERS

Authors

  • D. B. Tastanbekov Satbayev University
  • M. M. Tursynbekova Satbayev University

Keywords:

polymer casting, medical implants, biodegradability, PLLA, PLGA, osteosynthesis

Abstract

The purpose of this article is to study and select the optimal conditions for injection molding of biodegradable polymers for casting medical implants . This article highlights the relevance of the idea and substantiates its importance. The scheme of obtaining a product of a given shape of a biodegradable polymer by injection molding is also considered. An overview was made on the process parameters such as: temperature and pressure of the process, injection rate, cooling of the product, the characteristics of the mold.

References

[1] Suuronen R., Haers P.E., Lindqvist C., Sailer H.F. Update on bioresorbable plates in maxillofacial surgery // Facial Plastic Surgery. 1999. Vol. 15, N 1. P. 61-72.

[2] Eppley B.L. Use of resorbable plates and screws in pediatric facial fractures // Journal of Oral and Maxillofacial Surgery. 2005. Vol. 63, N 3. P. 385-391.

[3] Peltoniemi H., Ashammakhi N., Kontio R. The use of bioabsorbable osteofixation devices in craniomaxillofacial surgery // Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics. 2002. Vol. 94, N 1. P. 5-14.

[4] Holmes R.E., Cohen S.R., Cornwall G.B., Thomas K.A., Kleinhenz K.K. and Beckett M. Z. MacroPore resorbable devices in craniofacial surgery // Clinics in Plastic Surgery. 2004. Vol. 31, N 3. P. 393-406.

[5] Leiggener C.S., Curtis R., Rahn B.A. Effects of chemical composition and design of poly (L/DLLactide) implants on the healing of cranial defects // Journal of Cranio-Maxillo-Facial Surgery. 1998. Vol. 26. P. 151.

[6] Schiller C., Rasche C., Wehmöller M. Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate // Biomaterials. 2004. Vol. 25, N 7-8. P. 1239-1247.

[7] Hyon S.-H., Jamshidi K., Ikada Y. Effects of Residual Monomer on the Degradation of DL-Lactide Polymer // Polymer International. 1998. Vol. 46, N 3. P. 196-202.

[8] Ghosh S., Viana J.C., Reis R.L., Mano J.F. Effect of processing conditions on morphology and mechanical properties of injection-molded poly(L-lactic acid) // Polymer Engineering and Science. 2007. Vol. 46, N 7. P. 1141-1147.

[9] http://www.sciencedirect.com/science/article/pii/S0079670008000373. html

[10] Agrawal А.R., Pandelidis I.O., Pecht M. Injection-Molding Process Control-A Review // Department of Mechanical Engineering University of Maryland College Park, 1987,

[11] Malafeeva K.V., Moskaljuk O.A., Judin V.E., Sedushe N.G., Chvalun S.N., Elohovskij V.Ju., Popova E.N., Ivan'kova E.M. Poluchenie i svojstva volokon iz sopolimera molochnoj i glikolevoj kislot // Bysokomolekuljarnye soedinenija. 2017. Cerija A. Vol. 59, N 1. P. 47-52.

[12] Willberg-Keyriläinen Pia, Hannes Orelma and Ropponen Jarmo Injection Molding of Thermoplastic Cellulose Esters and Their Compatibility with Poly(Lactic Acid) and Polyethylene // Materials (Basel). 2018 Dec, Nov 23. N 11(12): 2358.

[13] Dorgan J.R., Lehermeier H., Mang, M. Thermal and rheological properties of commercial-grade poly(lactic acid)s // In J Polym environ. 2000. N 8. P. 1-9.

Published

2021-05-03