The SYNTHESIS AND STUDY OF METAL-POLYMER NANOCOMPOSITES BASED ON A COPOLYMER OF POLYETHYLENE GLYCOL MALEATE WITH ACRYLIC ACID, AND ITS CATALYTIC PROPERTIES
Keywords:
polyethylene glycol maleate, metal-polymer nanocomposite, catalytic activity, nanocomposite, nanoparticles, polymer matrixAbstract
Introduction. With the development of the chemical industry, the search for and synthesis
of new, and modification of the existing nanocatalytic systems are of great importance. In view of this, the
preparation of new catalysts by immobilization of transition metal metals in a polymer matrix becomes an
important direction in chemical synthesis. Purpose of this work is to submit experimental data on the
synthesis and study of the catalytic properties of silver and nickel nanostructures, immobilized in polymer
matrices, based on a binary system of unsaturated polyester – polyethylene glycol maleate – with acrylic
acid. Nanocomposites have been obtained by reducing a solution of nickel and silver metal salts with
sodium hypophosphite in the presence of an ammonia solution of silver chloride. Methodology. By the
methods of spectroscopy, microscopy the sizes, structure and morphology of polymer-stabilized
nanoparticles are determined. Results. The obtained nanocomposites contain isolated Ag0 nanoparticles
with a diameter of 60±10 nm, predominantly spherical in shape and metallic Ni0 with a cubic shape of
70±10 nm, uniformly distributed in the polymer matrix, as well as agglomerates on the surface of the
polymer matrix, the dimensions of which vary within 150–200 nm. The catalytic activity of the
synthesized nanocomposites, which show high efficiency in comparison with the standard metal catalysts,
has been also studied.