DETERMINATION THE OPTIMAL CONDITION OF SELECTION POLYSACCHARIDES FROM PLANTS HELIANTHUS TUBEROSUS

Authors

  • B. M. Izteleu Kazakh National Women's Teacher Training University
  • G. E. Azimbayeva Kazakh National Women's Teacher Training University
  • B. Zh. Dzhiembaev Kazakh National Women's Teacher Training University
  • A. A. Bakibaev National research Tomsk State University

Keywords:

Helianthus tuberosus, inulin, pectin substances, hemicellulose А and B, fraction, extraction

Abstract

Helianthus tuberosus is a perennial plant of the family Compositae. According to valuable dietary properties, people's attention is attracted. Helianthus tuberosus is growing in all climatic regions. Helianthus tuberosus as a potatoes is growing at all the unfavorable regions of the country. Topinambur preparations are antiarthritis, antituberculosis drugs, fibrinolytic agents that have antiarrhythmic activity. Topinambur juice has an antitumor effect of the stomach that helps restore gastric activity. In this article methods of complex isolation of polysaccharides from aboveground (flowers, leaves, stems) and underground (tubers) parts of plants of Helianthus tuberosus are considered. As a result of the research, optimal conditions for isolation of inulin, pectin substances, hemicellulose A and B were found.

References

[1] Compositae // Great Soviet Encyclopedia: [in 30 tons] / Ch. Ed. A. M. Prokhorov. 3-th issue. M.: Soviet Encyclopedia, 1969-1978.
[2] Yagodka V.S. Medicinal plants in dermatology and cosmetology. M.: World, 2008. 98 p.
[3] Bazylova E.Ya. Helianthus tuberosus–Earth pear. Leningrad, Russia, 1960. 250 p.
[4] Bobrovnik L.D., et al., Cryosushka A. New Method for the Storage of Helianthus tuberosus, Abstract. The 3rd Vses. scientific. – Produced. Confirmed: "Helianthus tuberosus and topin sunflower – problems of cultivation and use". Odessa, 1991. P. 118-119.
[5] Generalov E.A. Physicochemical approaches to the analysis of natural polysaccharides // Auditorium: electronic scientific journal of the Kursk State University. 2015. N 4(08).
[6] Kochetkov N. Chemistry of biologically active natural compounds. M.: Chemistry, 1970. P. 378.
[7] Drozdova I.L. Isolation and chemical study of polysaccharides of the herb millet (Mililotus Altissimus thuill.) // Vestnik VSU. Series: Chemistry. Biology. Pharmacy. 2004. N 1. P. 173-175.
[8] Kratovich L. Biochemistry of plants. M.: Gosimhizdat. P. 187-191 In the technology of pectin and pectin products. М.: Delhi, 2002. P. 209-221.
[9] Semenov A.A. Chemistry essay of natural connections. Novosibirsk: Nauka, 2000.
[10] Shipovskaya A.B. Methods of isolation and physical and chemical properties of natural polysaccharides: Educational–methodical allowance. Saratov: Saratov State University, 2015. P. 64.
[11] Jeong H.Y.a, Nguyen H.P.a, Eom S.H.c . Department of Plant and Environmental New Resources, Integrative analysis of pectin methylesterase (PME) and PME inhibitors in tomato (Solanum lycopersicum): Identification, tissue-specific expression, and biochemical characterization. Kyung Hee University, Yongin. P. 446-701.
[12] Mikhailovich T.V. Development of acid-cavitation technology of pectin from vegetable raw materials. M.: 2013. Р. 7.
[13] Putilin N., Losev V.A., Matvienko N. Obtaining pectin and food fibers from sugar beet. Minsk: Voronezh state technological Academy international technological seminar of sugar producers of countries of the EEU, 2018. Р. 3.
[103] Ghoneim M.M., Elokely K.M., El-Hela A.A., Mohammad A.E.I., Jacob M., Cutler S.J. Isolation and characterization of new secondary metabolites from Asphodelus microcarpus // Medicinal Chemistry Research. 2014. Vol. 23. P. 3510-3515 [doi:10.1007/s00044- 014-0928-x].
[104] Ghoneim M.M., Elokely K.M., El-Hela A.A., Mohammad A.-E.I., Jacob M., Radwan M.M., Doerksen R.J.,Cutler S.J., Ross S.A. Asphodosides A-E, anti-MRSA metabolites from Asphodelus microcarpus // Phytochemistry. 2014. Vol. 105. P. 79-84 [doi:10.1016/j.phytochem.2014.06.011].
[105] Lee J., Kim Y., Ryu S.Y., Lee J. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus // Scientific Reports. 2016. Vol. 14 [19267. doi:10.1038/srep19267].
[106] Ayo R.G., Amupitan, J.O. , Zhao Y. Cytotoxicity and antimicrobial studies of 1,6,8trihydroxy-3-methyl-anthraquinone (emodin) isolated from the leaves of Cassia nigricans Vah // Afr. J Biotechnol. 2007. Vol. 6. P. 1276-1279.
[107] Shukla S.K., Rao T.S. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study // Colloid Surface B. 2013. Vol. 103. P. 448-454.
[108] Iacobellis N.S., Cantore P.L., Capasso F., Senatore F. // J Agric Food Chem. 2005. – Vol. 53. P. 57.
[109] Chen W., Shen Y.M., Xu J.C. Dissectol A. An Unusual Monoterpene Glycoside from Incarvillea dissectifoliola // Planta Medica. 2003. Vol. 69. P. 579.
[110] Abudarwish SM, Ateyyat M, Salt A. The Pharmacological and Pesticidal Actions of Naturally Occurring 1,8-dihydroxyanthraquinones Derivatives // Helicobacter. 2008. Vol. 4. P. 495-505 [http://www.interscience.wiley.com/jpages/1083-4389/]
[111] Omosa L.K., Midiwo J.O., Mbaveng A.T., Tankeo S.B., Seukep J.A., Voukeng I.K., Dzotam J.K., Isemeki J., Derese S., Omolle R.A., Efferth T., Kuete V. Antibacterial activities and structure – activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes // SpringerPlus. 2016. Vol. 5. P. 901 [doi:10.1186/s40064-016-2599-1].
[112] Kemegne G.A., Mkounga P., Ngang J.J.E., Kamdem S.L.S., Nkengfack A.E. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii // BMC Microbiology. 2017. Vol.17 [doi:10.1186/s12866-017-0954-1].

Downloads

Published

2021-05-03