NATURAL DERIVATIVES 9,10-ANTHRAQUINONE AND THEIR ANTIMICROBIAL ACTIVITY
Keywords:
medicinal plants, natural sources, derivatives of 9,10-anthraquinone, antimicrobial activityAbstract
Problems of treatment and prevention of infectious diseases, due to the diversity of biological forms of pathogens, the constant emergence of multi-resistant forms, the emergence of new types of dangerous pathogens, determine the urgency of the problem of creating new antimicrobial agents. The analytical review presents material on the antimicrobial activity of natural anthraquinone derivatives. Data analysis shows that anthraquinone derivatives can serve as promising sources of antimicrobial agents.
References
[1] Informacionnyj bjulleten' VOZ № 310 "10 vedushhih prichin smerti v mire". 2014.
[2] Singh S.B. Confronting the challenges of discovery of novel antibacterial agents // Bioorganic and Medicinal Chemistry Letters. 2014. Vol. 24. P. 3683-3689.
[3] Egorov N.S. Osnovy uchenija ob antibiotikah. M.: MGU «Nauka», 2004. 525 p. [4] http://www.who.int/drugresistance/AMR_Importance/ru/
[5] WHO. Global action plan on antimicrobial resistance; 2015.
[6] Rather I.A., Kim B-C., Bajpai V.K., Park Y-H. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention // Saudi Journal of Biological Sciences. 2017. Vol. 24, Issue 4. P. 808-812.
[7] Morehead M.S., Scarbrough C. Emergence of Global Antibiotic Resistance // Primary Care: Clinics in Office Practice. 2018. Vol. 45, Issue 3. P. 467-484.
[8] Wise R., Hart T., Cars O., Streulens M., Helmuth R. Antimicrobial resistance. Is a major threat to public health. // BMJ (Clinical Research Ed.). 1998. Vol. 317. P. 609-610.
[9] Zubov P.V., Novikova V.V. Razrabotka novyh antibakterial'nyh preparatov-problemy i perspektivy // Sovremennye problemy nauki i obrazovanija. 2015. N 5 [https://scienceeducation.ru/pdf/2015/5/649.pdf] .
[10] Golubovskaja O.A. Rezistentnost' k lekarstvennym sredstvam – Problema XXI veka // Novosti mediciny i farmacii. 2011. N 4. P. 20-21.
[11] Ovchinnikov R.S. Jetiopatogenez sovremennyh infekcij. Ch. 2. Rezistentnost' vozbuditelej k antibiotikam. Gospital'nye infekcii. Perspektivnye sredstva terapii // VetPharma. 2015. N 3. P. 40-45.
[12] Wenzel R.P. The antibiotic pipeline-challenges, costs, and values // N .Engl. J. Med. 2004. Vol. 351. P. 523-526.
[13] Cosgrove S.E., Sakoulas D., Perencevich E.N., Schwaber M.J., Karchmer A.W., Carmeli Y. Comparison of Mortality Associated with Methicillin-Resistant and Methicillin Susceptible Staphylococcus aureus Bacteremia: A Meta-analysis // Clin. Infect. Dis. 2006. Vol. 36. P. 53-59.
[14] Rossolini G.M., Arena F., Pecile P., Pollini S. Update on the antibiotic resistance crisis // Current Opinion in Pharmacology. 2014. Vol. 18. P. 56-60.
[15] A. P. Johnson. Methicillin-resistant Staphylococcus aureus: the European landscape.// Journal of Antimicrobial Chemotherapy. 2011. Vol. 66, iv43-iv48.
[16] Doern G.V., Heilmann K.P., Huynh H.K., Rhomberg P.R., Coffman S.L., Brueggemann A.B. Antimicrobial Resistance among Clinical Isolates of Streptococcus pneumoniae in the United States during 1999-2000, Including a Comparison of Resistance Rates since 1994-1995. // Antimicrobial Agents and Chemotherapy. 2001. Vol. 45. P. 1721-1729.
[17] Eterna da Costa M., Machado H.S. Evolution of Antimicrobial Resistancein Europe: A Factual Review // Journal of Allergy and Therapy. 2017. Vol. 8, Issue 1. DOI: 10.4172/21556121.1000250.
[18] Qiao M., Ying G.-G., Singer A.C., Zhu Y.-G. Review of antibiotic resistance in China and its environment // Environment International. 2018. Vol. 110. P. 160-172.
[19] Bouchoucha S.L., Whatman E., Johnstone M.-J. Media representation of the antimicrobial resistance (AMR) crisis: An Australian perspective // Infection, Disease and Health // In press, corrected proof, Available online 22 October 2018.
[20] Pottinger P.S. Methicillin-Resistant Staphylococcus aureus Infections // Medical Clinics of North America. 2013. Vol. 97, Issue 4. P. 601-619.
[21] Abraham R. Taylor Methicillin-Resistant Staphylococcus Aureus Infections // Primary Care: Clinics in Office Practice. 2013. Vol. 40, Issue 3. P. 637-654.
[22] Boswihi S.S., Udo E.E. Methicillin-resistant Staphylococcus aureus: An update on the epidemiology, treatment options and infection control // Current Medicine Research and Practice. 2018. Vol. 8, Issue 1. –P. 18-24.
[23] Ventola C.L. The antibiotic resistance crisis. Part 1: causes and threats. 2015. P.T. 40. P. 277-283.
[24] Golkar Z., Bagasra O., Pace D.G. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. // Journal of Infection in Developing Countries. 2014. Vol 8, Issue 2. Р. 129-136.
[25] Gross Ml. Antibiotics in crisis. // Current Biology. 2013. Vol. 23, R1063-R1065.
[26] ECDC. European Antimicrobial Resistance Surveillance Network (EARSNet) Interactive Database. 2014.
[27] Dodds D.R. Antibiotic resistance: A current epilogue.// Biochemical Pharmacology. 2017. Vol. 134. P. 139-146.
[28] https://www.cdc.gov/drugresistance/about.html
[29] Scheffler R.J., Colmer S., Tynan H., Demain A.L., Gullo V.P. Antimicrobials, drug discovery, and genome mining. // Appl. Microbiol. Biotechnol. 2013. Vol. 97. P. 969-978.
[30] https://www.fda.gov/
[31] Mashkovskij M.D. Lekarstvennye sredstva. M.: RIA «Novaja volna», 2012. (16 izdanie). 1216 p.
[32] RLS-Jenciklopedija lekarstv, RLS-2017 / Pod red. G. L. Vyshkovskogo. M.: RLS, 2016. 1288 p.
[33] VIDAL-2017. Lekarstvennye preparaty v Rossii. M.: Vidal, 2016. 1420 p.
[34] Yılmaz Ç., Özcengiz G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps // Biochemical Pharmacology. 2017. Vol. 133. P. 43-62.
[35] Антибактериальная терапия. Практическое руководство / Ред. Страчунский Л.С., Белоусов Ю.Б., Козлов С.Н. – М.: Полимаг, 2000. – 194 с.
[36] Butler M.S., Blaskovich M.A., Cooper M.A. Antibiotics in the clinical pipeline in 2013 // The Journal of Antibiotics. 2013. P. 571-591.
[37] Brown D.G., Lister T., May-Dracka T.L. New natural products as new leads for antibacterial drug discovery // Bioorganic and Medicinal Chemistry Letters. 2014. Vol. 24, Issue 2. P. 413-418.
[38] Mickymaray S., Saleh Al Aboody M., Rath P.K., Annamalai P., Nooruddin T. Screening and antibacterial efficacy of selected Indian medicinal plants // Asian Pacific Journal of Tropical Biomedicine. 2016. Vol. 6, Issue 3. P. 185-191.
[39] Sharma A., Flores-Vallejo R.C., Cardoso-Taketa A., Villarreal M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine // Journal of Ethnopharmacology. 2017. Vol. 208. P. 264-329.
[40] Vambe M., Aremu A.O., Chukwujekwu J.C., Finnie J.F., Van Staden J. Antibacterial screening, synergy studies and phenolic content of seven South African medicinal plants against drug-sensitive and resistant microbial strains.// South African Journal of Botany. 2018. Vol. 114. P. 250-259.
[41] Nair J.J., Wilhelm A., Bonnet S.L., Staden J. Antibacterial constituents of the plant family Amaryllidaceae // Bioorganic and Medicinal Chemistry Letters. 2017. Vol. 27, Issue 22. P. 4943-4951.
[42] Gutiérrez-del-Río I., Fernández J., Lombó F. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols // International Journal of Antimicrobial Agents. 2018. Vol. 52, Issue 3. P. 309-315.
[43] Barbieri R., Coppo E., Marchese A., Daglia M., Sobarzo-Sánchez E., Nabavif S.F., Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity // Microbiological Research. 2017. Vol. 196. P. 44-68.
[44] Quan D., Nagalingam G., Payne R., Triccas J.A. New tuberculosis drug leads from naturally occurring compounds // International Journal of Infectious Diseases. 2017. Vol. 56. P. 212-220.
[45] Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow // Molecular Aspects of medicine. 2006. Vol. 27, Issue 1. P. 1-93.
[46] Sweidan A., Chollet-Krugler M., Sauvager A., Chokr A., Bonnaure-Mallet M., Weghe P., Tomasi S., Bousarghin L. Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis // Fitoterapia. 2017. Vol. 121. P. 164-169.
[47] Nalini S., Richard D.S., Riyaz S.U.M., Kavitha G., Inbakandan D. Antibacterial macro molecules from marine organisms // International Journal of Biological Macromolecules. 2018. Vol. 115. P. 696-710.
[48] Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs Over the Years from 1981 to 2010 // Journal of Natural Products. 2012. Vol. 75. P. 311-335. doi:10.1021/np200906s.Natural.
[49] Gibbons S. Phytochemicals for bacterial resistance – strengths, weaknesses and opportunities // Planta Med. 2008. Vol. 74. P. 594-602.
[50] Santhosh R.S., Suriyanarayanan B. Plants: A source for new antimycobacterial drugs // Planta Medica. 2014. Vol. 80. P. 9-21. doi:10.1055/s-0033-1350978.
[51] Thomson R.H. Naturally Occuring Quinones III. New York: Chapman & Hall, 1987. P. 345-524.
[52] Duval J., Pecher V., Poujol M., Lesellier E. Research advances for the extraction, analysis and uses of anthraquinones: A review // Industrial Crops and Products. 2016. Vol. 94. P. 812-833.
[53] Singh R., Chauhan S.M. 9,10-Anthraquinones, other biologically active compounds from the genus Rubia // Chemistry biodiversity. 2004. Vol. 1. P. 1241-1264.
[54] Zhang J., Xin H., Xu Y., Shen Y., He Y-Q., Hsien-Yeh, Lin B., Song H., Juan-Liu, Yang H. Qin L., Zhang Q., Du J. Morinda officinalis How. – A comprehensive review of traditional uses, phytochemistry and pharmacology // Journal of Ethnopharmacology. 2018. Vol. 213. P. 230-255.
[55] Baruah A., Bordoloi M., Baruah P.H.D. Aloe vera: A multipurpose industrial crop // Industrial Crops and Products. 2016. Vol. 94. P. 951-963.
[56] Akaberi M., Sobhani Z., Javadi B., Sahebkar A., Emami S.A. Therapeutic effects of Aloe spp. in traditional and modern medicine: A review // Biomedicine and Pharmacotherapy. 2016. Vol. 84. P. 759-772.
[57] Radha M.H., Laxmipriya N.P. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review // Journal of Traditional and Complementary Medicine. 2015. Vol. 5, Issue 1. P. 21-26.
[58] Yadav J.P., Arya V., Yadav S., Panghal M., Kumar S., Dhankhar S. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile // Fitoterapia. 2010. Vol. 81, Issue 4. P. 223-230.
[59] Kosalec I., Kremer D., Locatelli M., Epifano F., Zovko Končić M. Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. fallax, R. intermedia and R. pumila // Food Chemistry. 2013. Vol. 136, Issue 2. P. 335-341.
[60] Zargar B.A., Masoodi M.H., Ahmed B., Ganie S.A. Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn // Food Chemistry. 2011. Vol. 128, Issue 3. P. 585-589.
[61] Rokaya M.B., Münzbergová Z., Timsina B., Bhattarai K.R. Rheum australe D. Don: A review of its botany, ethnobotany, phytochemistry and pharmacology // Journal of Ethnopharmacology. 2012. Vol. 141, Issue 3. P. 761-774.
[62] Zheng Q., Wu H., Guo J., Nan H., Chen S., Yang J., Xu X. Review of Rhubarbs: Chemistry and Pharmacology // Chinese Herbal Medicines. 2013. Vol. 5, Issue 1. P. 9-32.
[63] Vasas A., Orbán-Gyapai O., Hohmann J. The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology // Journal of Ethnopharmacology. 2015. Vol. 175. P. 198-228.
[64] Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. // Journal of Ethnopharmacology. 2010. Vol. 131, Issue 3. P. 511-521.
[65] Fajn V.Ja. 9,10 - Antrahinony i ih primenenie. M.: Centr fotohimii RAN, 1999. 92 p.
[66] Gorelik M.V. Himija antrahinona i ego proizvodnyh. M.: Himija, 1983. 295 p.
[67] Stepanov B.I. Vvedenie v himiju i tehnologiju organicheskih krasitelej. M.: Himija, 1984. 592 p.
[68] Li X., Liu Z., Chen Y., Wang L.-J., Zheng Yi-N., Sun G.-Z., Ruan C.-C. Rubiacordone A: a new anthraquinone glycoside from the roots of Rubia cordifolia // Molecules. 2009. Vol. 14, N 1. P. 566-572.
[69] Derksen G.C.H., Beek T.A. Rubia tinctorum L. // Studies in Natural Products Chemistry. 2002. Vol. 26. P. 629-684.
[70] Manojlovic N.T., Solujic S., Sukdolak S., Milosev M. Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina // Fitoterapia. 2005. Vol. 76. P. 244-246.
[71] Xiang W., Song Q-S., Zhang H-J., Guo S-P. Antimicrobial nthraquinones from Morinda angustifolia // Fitoterapia. 2008. Vol. 79. P. 501-504.
[72] Chan-Blanco Y., Vaillant F., Perez A.M., Reynes M., Brillouet J.M., Brat P. The noni fruit (Morinda citrifolia L.): a review of agricultural research, nutritional and therapeutic properties // Journal of Food Composition and Analysis. 2006. Vol. 19, Issue 6-7. P. 645-654.
[73] Atkinson N. Antibacterial substances from flowering plants. 3. Antibacterial activity of dried Australian plants by a rapid direct plate test // Australian J. Exper. Biol. 1956. Vol. 34. P. 17-26. [74] Wang M., West B.J., Jensen C.J., Nowicki D., Su C., Palu A.K., Anderson G. Morinda citrifolia (Noni): A literature review and recent advances in Noni research // Acta Pharmacologica Sinica. 2002. Vol. 23, Issue 12. P. 1127 -1141.
[75] Mishra B.B., Kishore N., Tiwari V.K., Singh D.D., Tripathi V. A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family Rutaceae) // Fitoterapia. 2010. Vol. 81. P. 104-107.
[76] Núñez Montoya S.C., Agnese A.M., Pérez C., Tiraboschi I.N., Cabrera J.L. Pharmacological and toxicological activity of Heterophyllaea pustulata anthraquinones extracts // Phytomedicine. 2003. Vol. 10. P. 569-574.
[77] Núñez Montoya S.C., Comini L.R., Cabrera J.L. Antimicrobial activity of natural photosensitizing anthraquinones // Science against microbial pathogens: communicating current research and technological advances. Ed. by A.Méndez-Vila. 2011. P. 3-13.
[78] Comini L.R., Montoya S.C.N., Páez P.L., Argüello G.A., Albesa I., Cabrera J.L. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae) // Journal of Photochemistry and Photobiology B.: Biology. 2011. Vol. 102. P. 108-114 [doi:10.1016/j.jphotobiol.2010.09.009.7].
[79] Mohanlall V., Odhav B. Antibacterial, anti-inflammatory and antioxidant activities of anthraquinones from Ceratotheca triloba (Bernh) Hook F. // Journal of Medicinal Plant Research. 2013. Vol. 7. P. 877-886 [doi:10.5897/JMPR12.900].
[80] Lenta B.N., Weniger B., Antheaume C., Noungoue D.T., Ngouela S., Assob J.C.N., Vonthron-Seґneґcheau C., Fokou P.A., Devkota K.P., Tsamo E., Sewald N. Anthraquinones from the stem bark of Stereospermum zenkeri with antimicrobial activity // Phytochemistry. 2007. Vol. 68. P. 1595-1599.
[81] Kaithwas G., Kumar A., Pandey H., Acharya A.K., Singh M., Bhatia D. Investigation of comparative antimicrobial activity of Aloe Vera gel and juice // Pharmacology online. 2008. Vol. 1. P. 239-243.
[82] Cellini L., Bartolomeo S. Di., Campli E. Di., Genovese S., Locatelli M., Giulio M. Di. In vitro activity of Aloe vera inner gel against Helicobacter pylori strains // Letters in Applied Microbiology. 2014.Vol.59. P. 43-48 [doi:10.1111/lam.12241].
[83] Cock I.E. Antimicrobial activity of Aloe barbadensis Miller leaf gel components // The Internet Journal of Microbiology. 2007. Vol. 4.
[84] Chukwujekwu J.C., Coombes P.H., Mulholland D.A., Staden J.Van. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis // South African Journal of Botany. 2006. Vol. 72. P. 295-297 [doi:10.1016/j.sajb.2005.08.003].
[85] Ayo R.G., Amupitan J.O., Zhao Y. Cytotoxicity and antimicrobial studies of 1,6,8- trihydroxy-3-methyl-anthraquinone (emodin) isolated from the leaves of Cassia nigricans Vahl // African Journal of Agriculture. 2013. Vol.1. P. 8-10.
[86] Liu M., Peng W., Qin R., Yan Z., Cen Y. The direct anti-MRSA effect of emodin via damaging cell membrane // Applied Microbiology and Biotechnology. 2015. Vol. 99. P. 7699-7709 [doi:10.1007/s00253-015-6657-3].
[87] Omosa L.K., Midiwo J.O., Mbaveng A.T., Tankeo S.B., Seukep J.A., Voukeng I.K. Antibacterial activities and structure – activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes // SpringerPlus. 2016. Vol. 5. P. 901-916 [doi:10.1186/s40064-016-2599-1].
[88] Kremer K.D., Locatelli M., Epifano F., Genovese S., Carlucci G., Koncˇic M.Z. Anthraquinone profiles, antioxidant and antimicrobial properties of Frangula rupestris (Scop.) Schur and Frangula alnus Mill. Bark // Food Chemistry. 2012. Vol. 131. P. 1174-1180.
[89] Hamed M.M., Refahy L.A., Abdel-aziz M.S. Evaluation of Antimicrobial Activity of Some Compounds Isolated from Rhamnus cathartica L. // Oriental journal of Chemistry. 2015. Vol. 31. P. 1133-1140 [doi:10.13005/ojc/310266].
[90] Kremer K.D., Locatelli M., Epifano F., Genovese S., Carlucci G., Randicґ M., Koncˇicґ M.Z. Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. fallax, R. intermedia and R. pumila // Food Chemistry. 2013. Vol. 136. P. 335-341.
[91] García-sosa K., Villarreal-alvarez N., Lübben P., Peña-rodríguez L.M. Chrysophanol, an antimicrobial anthraquinone from the Root Extract of Colubrina greggii // Journal of the Mexican Chemical Society. 2006. Vol. 50. P. 76-78.
[92] Lu C., Wang H., Lv W., Xu P., Zhu J., Xie J., Liu B., Lou Z. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila // Fisheries Science. 2011. Vol. 77, Issue 3. P. 375-384 [doi:10.1007/s12562- 011-0341-z.]
[93] Kosikowska U., Smolarz H.D., Malm A. Antimicrobial activity and total content of polyphenols of Rheum L. species growing in Poland // Central European Journal of Biology. 2010. Vol. 5 [doi:10.2478/s11535-010-0067-4].
[94] Lee Y., Kang O., Choi J., Oh Y., Keum J. Synergistic effect of emodin in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus // Pharmaceutical Biology. 2010. Vol. 48. P. 1285-1290 [doi:10.3109/13880201003770150].
[95] Babu K.S., Srinivas P.V., Praveen B., Kishore K.H., Murthy U.S., Rao J.M. Antimicrobial constituents from the rhizomes of Rheum emodi // Phytochemistry. 2003. Vol. 62. P. 203-207.
[96] Ibrahim M., Khaja M. N., Aara A., Khan A.A., Habeeb M.A., Devi Y.P. Antimicrobial activity of Sapindus mukorossi and Rheum emodi extracts: In vitro and In vivo studies // World Journal of Gastroenterology.2006. Vol. 12. P. 7136-7142.
[97] Hatano T., Uebayashi H., Ito H., Shiota S., Tsuchiya T., Yoshida T. Phenolic con-stituents of cassia seeds and antibacterial effect of some Naphthalenes and Anthraquinones on methicillin-resistant Staphylococcus aureus // Chemical and Pharmaceutical Bulletin. 1999. – Vol. 47. Issue 8. P. 1121-1127.
[98] Agarwal S.K., Singh S.S., Verma S., Kumar S. Antifungal activity of anthraquinone derivatives from Rheum emodi // Journal of Ethnopharmacology. 2000. Vol. 72. P. 43-46.
[99] Orbán-Gyapai O., Liktor-Busa E., Kúsz N., Stefkó D., Urbán E., Hohmann J., Vasas A. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus // Fitoterapia. 2017 [doi: 10.1016/j.fitote.2017.03.009].
[100] Mohammed S.A., Panda R.C., Madhan B., Assefa B. Demessie Extraction of bio-active compounds from Ethiopian plant material Rumex abyssinicus (mekmeko) root-A study on kinetics, optimization, antioxidant and antibacterial activity // Journal of the Taiwan Institute of Chemical Engineers. 2017. Vol. 75. P. 228-239.
[101] Malmir M., Ferreira E., Serrano R., Gomes E.T., Canic M., Silva O. In vitro antiNeisseria gonorrhoeae activity of Senna podocarpa root extracts // Industrial Crops and Products. 2015. Vol. 76. P. 467-471 [doi:10.1016/j.indcrop.2015.07.02].
[102] Ghoneim M.M., Ma G., El-Hela A.A., Mohammad A. E.I., Kottob S., El-Ghaly S. Biologically active secondary metabolites from Asphodelus microcarpus // Natural Product Communication. 2013. Vol. 8. P. 1117-1119.
[103] Ghoneim M.M., Elokely K.M., El-Hela A.A., Mohammad A.E.I., Jacob M., Cutler S.J. Isolation and characterization of new secondary metabolites from Asphodelus microcarpus // Medicinal Chemistry Research. 2014. Vol. 23. P. 3510-3515 [doi:10.1007/s00044- 014-0928-x].
[104] Ghoneim M.M., Elokely K.M., El-Hela A.A., Mohammad A.-E.I., Jacob M., Radwan M.M., Doerksen R.J.,Cutler S.J., Ross S.A. Asphodosides A-E, anti-MRSA metabolites from Asphodelus microcarpus // Phytochemistry. 2014. Vol. 105. P. 79-84 [doi:10.1016/j.phytochem.2014.06.011].
[105] Lee J., Kim Y., Ryu S.Y., Lee J. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus // Scientific Reports. 2016. Vol. 14 [19267. doi:10.1038/srep19267].
[106] Ayo R.G., Amupitan, J.O. , Zhao Y. Cytotoxicity and antimicrobial studies of 1,6,8-trihydroxy-3-methyl-anthraquinone (emodin) isolated from the leaves of Cassia nigricans Vah // Afr. J Biotechnol. 2007. Vol. 6. P. 1276-1279.
[107] Shukla S.K., Rao T.S. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study // Colloid Surface B. 2013. Vol. 103. P. 448-454.
[108] Iacobellis N.S., Cantore P.L., Capasso F., Senatore F. // J Agric Food Chem. 2005. Vol. 53. P. 57.
[109] Chen W., Shen Y.M., Xu J.C. Dissectol A. An Unusual Monoterpene Glycoside from Incarvillea dissectifoliola // Planta Medica. 2003. Vol. 69. P. 579.
[110] Abudarwish SM, Ateyyat M, Salt A. The Pharmacological and Pesticidal Actions of Naturally Occurring 1,8-dihydroxyanthraquinones Derivatives // Helicobacter. 2008. Vol. 4. P. 495-505 [http://www.interscience.wiley.com/jpages/1083-4389/]
[111] Omosa L.K., Midiwo J.O., Mbaveng A.T., Tankeo S.B., Seukep J.A., Voukeng I.K., Dzotam J.K., Isemeki J., Derese S., Omolle R.A., Efferth T., Kuete V. Antibacterial activities and structure – activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes // SpringerPlus. 2016. Vol. 5. P. 901 [doi:10.1186/s40064-016-2599-1].
[112] Kemegne G.A., Mkounga P., Ngang J.J.E., Kamdem S.L.S., Nkengfack A.E. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii // BMC Microbiology. 2017. Vol.17 [doi:10.1186/s12866-017-0954-1]