MICROWAVE RADIATION, ITS INFLUENCE ON SOLUTIONS AND USE FOR EXTRACTION OF COMPONENTS OF PLANT MATERIAL

1-st Report. The systems of microwave-assisted extraction and their application for extraction of natural compounds

Authors

  • Т. V. Kharlamova A.B. Bekturov Institute of chemical sciences
  • K. D. Praliyev A.B. Bekturov Institute of chemical sciences

Keywords:

microwave radiation, natural compounds, microwave extraction

Abstract

The review discusses the basic principles of microwave extraction and its difference from convection extraction methods. Microwave extraction systems and their application for distinguishing various classes of natural compounds are considered.

References

[1] Paré J.R.J., Bélanger J.M.R., Stafford S.S. Microwave-assisted process (MAPTM): a new tool for the analytical laboratory // TrAC, Trends in Analytical Chemistry. 1994. Vol. 13. P. 176-184.
[2] Camel V. Microwave-assisted solvent extraction of environmental samples // TrAC Trends in Analytical Chemistry. 2000. Vol. 19, Issue 4. P. 229-248.
[3] Ondruschka B., Asghari J. Microwave-Assisted Extraction – A State-of-the-Art Overview of Varieties // Chimia. International Journal for Chemistry. 2006. Vol 60, Issue 6. P. 321-325.
[4] Markin V.I., Cheprasova M.Yu., Bazarnova N.G. The main directions of the use of microwave radiation during processing of plant raw materials // Chemistry of plant materials. 2014. N 4. P. 21-42.
[5] Saha S., Singh A.K., Keshari A.K., Raj V., Rai A., Maity S. Chapter 2. Modern Extraction Techniques for Drugs and Medicinal Agents // Ingredients Extraction by Physicochemical Methods in Food (A volume in Handbook of Food Bioengineering). 2018. P. 65-106.
[6] Mingos D.M.P., Baghurst D.R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry // Chemical Society Reviews. 1991. N 20. P. 1-47.
[7] Zhang H-F., Yang X.-H., Wang Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions // Trends in Food Science and Technology. 2011. Vol. 22, Issue 12. P. 672-688
[8] Kokolakis A.K., Golfinopoulos S.K. Microwave-assisted techniques (MATs); a quick way to extract a fragrance: A review // Natural Product Communications. 2013. Vol. 8, N 10. P. 1493-1504.
[9] Kurbakova I.V. Microwave Irradiation in Analytical Chemistry: Opportunities and Prospects of Use // Russian Chemical Reviews. 2002. Vol. 71, N 4. P. 327-340.
[10] Decareau R.V. Microwaves in the Food Processing Industry. New York: Academic Press, 1985.
[11] Smith F.E., Arsenault E.A. Microwave-assisted sample preparation in analytical chemistry // Talanta. 1996. Vol. 43, Issue 8. P. 1207-1268.
[12] Abu-Samra A., Morris J.S., Koirtyohama S.R. Wet ashing of some biological samples in a microwave oven // Analytical Chemistry. 1975. Vol. 47, Issue 8. P. 1475-1477.
[13] Shavshukova S.Yu. Historical stages of the development of microwave technology for scientific research and industrial processes: Abstract of diss. Doctor of Tech. Science. Ufa, 2008. 48 p. (specialty 07.00.10 - History of science and technology).
[14] Pastor A., Vazquez E., Ciscar R., De la Guardia M. Efficiency of the microwave-assisted extraction of hydrocarbons and pesticides from sediments // Analytica Chimica Acta. 1997. Vol. 344, Issue 3. P. 241-249.
[15] Luque-Garcia J.L., Luque de Castro M.D. Focused microwave assisted Soxhlet extraction: devices and applications // Talanta. 2004. Vol. 64. P. 571-577.
[16] Letellier M., Budzinski H. Microwave assisted extraction of organic compounds // Analusis. 1999. Vol. 27. P. 259-271.
[17] Mandal V., Mohan Y., Hemalatha S Microwave assisted extraction – An innovative and promising extraction tool for medicinal plant research // Pharmacognosy Reviews. 2007. Vol. 1, N 1. P. 7-18
[18] Metaxas A.C. Meredith R.J. Industrial Microwave Heating. London: Peter Peregrinus, 1983.
[19] Datta A.K., Anantheswaran R.C. Handbook of Microwave Technology for Food Applications. New York: Marcel Dekker, 2001.
[20] Chan C.-H., Yusoff R., Ngoh G.-C., Kung F.W.-L. Microwave-assisted extractions of active ingredients from plants // Journal of Chromatography A. 2011. Vol. 1218, Issue 37. P. 6213-6225.
[21] Luque-García J.L., Luque de Castro M.D. Where is microwave-based analytical equipment for solid sample pre-treatment going? // TrAC, Trends in Analytical Chemistry. 2003. Vol. 22. Issue 2. P. 90-98.
[22] Hayat K., Hussain S., Abbas S., Farooq U., Ding B., Xia S., Jia C., Zhang X., Xia W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro // Separation and Purification Technology. 2009. Vol. 70, Issue 1. P. 63-70.
[23] Ballard T.S., Mallikarjunan P., Zhou K., O'Keefe S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins // Food Chemistry. 2010. Vol. 120. P. 1185-1192.
[24] Sterbova D., Matejicek D., Vlcek J., Kuban V. Combined microwave assisted isolation and solid- phase purification procedures prior to the chromatographic determination of phenolic compounds in plant materials // Analytica Chimica Acta. 2004. Vol. 513, Issue 2. P. 435-444.
[25] Moreira M.M., Barroso M.F., Boeykens A., Withouck H., Morais S., Delerue-Matos C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction // Industrial Crops and Products. 2017. Vol. 104. P. 210-220.
[26] Ciulu M., Quirantes-Piné R., Spano N., Sanna G., Borrás-Linares I., Segura-Carretero A. Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves // Industrial Crops and Products. 2017. Vol. 108. P. 106-112.
[27] Xie J.-H., Dong C.-J., Nie S.-P., Li F., Wang Z.-J., Shen M.-Y., Xie M.-Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves // Food Chemistry. 2015. Vol. 186. P. 97-105.
[28] Bampouli A., Kyriakopoulou K., Papaefstathiou G., Louli V., Aligiannis N., Magoulas K., Krokida M. Evaluation of total antioxidant potential of Pistacia lentiscus var. chia leaves extracts using UHPLC–HRMS // Journal of Food Engineering. 2015. Vol. 167. P. 25-31.
[29] Xiao W., Han L., Shi B. Microwave-assisted extraction of flavonoids from Radix Astragali // Separation and Purification Technology. 2008. Vol. 62. P. 614-618.
[30] Inoue T., Tsubaki S., Ogawa K., Onishi K., Azuma J. Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction // Food Chemistry. 2010. Vol. 123, Issue 2. P. 542-547.
[31] Yang Z., Zhai W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS // Innovative Food Science & Emerging Technologies. 2010. Vol. 11, Issue 3. P. 470-476.
[32] Liazid A., Guerrero R.F., Cantos E., Palma M., Barroso C.G. Microwave assisted extraction of anthocyanins from grape skins // Food Chemistry. 2011. Vol. 124, Issue 3. P. 1238-1243.
[33] Kong Y., Zu Y.G., Fu Y.J., Liu W., Chang F.R., Li J., Chen Y.H., Zhang S., Gu C.B. Optimization of microwave-assisted extraction of cajaninstilbene acid and pinostrobin from pigeonpea leaves followed by RP-HPLC-DAD determination // Journal of Food Composition and Analysis. 2010. Vol. 23, Issue 4. P. 382-384.
[34] Hemwimon S., Pavasant P., Shotiprule A. Microwave assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia // Separation and Purification Technology. 2007. Vol. 54. P. 44-50.
[35] Martino E., Ramaiola I., Urbano M., Bracco F., Collina S. Microwave assisted extraction of coumarin and related compounds from Melilotus officinalis L. as an alternative to Soxhlet and ultrasound assisted extraction // Journal of Chromatography A. 2006. Vol. 1125. P. 147-151.
[36] Waksmundzka-Hajnas M., Petruczynik, Dragan A., Wianowska D., Dawidowicz A.L., Sowa I. Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits // Journal of Chromatography B. 2004. Vol. 800. P. 181-187.
[37] Chen Y., Xie M.Y., Gong X.F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum // Journal of Food Engineering. 2007. Vol. 81, Issue 1. P. 162-170.
[38] Kwon J., Lee G., Belanger J.M.R., Pare J.R.J. Effect of ethanol concentration on the efficiency of extraction of ginseng saponins when using a microwave assisted process // Journal of Food Science and Technology. 2003. Vol. 38. P. 615-622.
[39] Zheng X., Wang X., Lan Y., Shi J., Xue S.J., Liu C. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds // Separation and Purification Technology. 2009. Vol. 70, Issue 1. P. 34-40.
[40] Yang Y.C., Li J., Zu Y.G., Fu Y.J, Luo M., Wu N., Liu X.L. Optimisation of microwaveassisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity // Food Chemistry. 2010. Vol. 122, Issue 1. P. 373-380.
[41] Xie D.-T., Wang Y-Q., Kang Y., Hu Q.-F., Su N.-Y., Huang J.-M., Che C.-T., Guo J.-X. Microwave-assisted extraction of bioactive alkaloids from Stephania sinica // Separation and Purification Technology. 2014. Vol. 130. P. 173-181.
[42] Alara O.R., Abdurahman N.H., Olalere O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology // Food and Bioproducts Processing. 2018. Vol. 107. P. 36-48.
[43] Li H., Chen B., Zhang Z., Yao S. Focused microwaveassisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies) // Talanta. 2004. Vol. 63, Issue 3. P. 659-665.
[44] Zhou H.-Y., Liu C.-Z. Microwave assisted extraction of solanesol from tobacco leaves. // Journal of Chromatography A. 2006. Vol. 1129, Issue 1. P. 135-139.
[45] Li T., Zhang Z., Zhang L., Huang X., Lin J., Chen G. An improved facile method for extraction and determination of steroidal saponins in Tribulus terrestris by focused microwaveassisted extraction coupled with GC–MS // Journal of Separation Science. 2009. Vol. 32, Issue 2324. P. 4167.
[46] Hu Z., Cai M., Liang H.H. Desirability function approach for the optimization of microwave-assisted extraction of saikosaponins from Radix Bupleuri // Separation and Purification Technology. 2008. Vol. 61, Issue 3. P. 266-275.
[47] Lu Y., Yue X.F., Zhang Z.Q., Li X.X., Wang K. Analysis of Rodgersia aesculifolia Batal. Rhizomes by Microwave-Assisted Solvent Extraction and GC–MS // Chromatographia. 2007. Vol. 66, Issue 5-6. P. 443-446.
[48] Yan M.M., Liu W., Fu Y.J., Zu Y.G., Chen C.Y., Luo M. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali // Food Chemistry. 2010. Vol. 119, N 4. P. 1663-1670.
[49] Mandal V., Mandal S.C. Design and performance evaluation of a microwave based low carbon yielding extraction technique for naturally occurring bioactive triterpenoid: Oleanolic acid // Biochemical Engineering Journal. 2010. Vol. 50, Issue 1-2. P. 63-70.
[50] Pan X., Niu G., Liu H. Microwave assisted extraction of tea polyphenols and tea caffeine from green tea leaves // Chemical Engineering and Processing. 2003. Vol. 42. P. 129-133.
[51] Pan X., Liu H., Jia G., Shu Y.Y. Microwave assisted extraction of glycyrrhizic acid from licorice root // Biochemical Engineering Journal. 2000. Vol. 5. P. 173-177.
[52] Fulzele D.P., Satdive R.K. Comparison of techniques for the extraction of the antican- cer drug camptothecin from Nothapodytes foetida // Journal of Chromatography A. 2005. Vol. 1063. P. 9-13.
[52] Pan X., Niu G., Liu H. Microwave assisted extraction of tanshinones from Salvia miltiorrhiza bunge with analysis by high performance liquid chromatography // Journal of Chromatography A. 2001. Vol. 922. P. 371-375.
[54] Dahmoune F., Spigno G., Moussi K., Remini H., Cherbal A., Madan K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared withultrasound-assisted and conventional solvent extraction // Industrial Crops and Products. 2014. Vol. 61. P. 31-40.
[55] Karabegović I.T., Stojičević S.S., Veličković D.T., Todorović Z.B., Nikolić N.C., Lazić M.L. The effect of different extraction techniques on the compositionand antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts // Industrial Crops and Products. 2014. Vol. 754. P. 142-148.
[56] Krishnan R.Y., Chandran M.N., Vadivel V., Rajan K.S. Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula // Separation and Purification Technology. 2016. Vol. 170. P. 224-233.
[57] Nayak B., Dahmoune F., Moussi K., Remini H., Dairi S., Aoun O., Khodir M. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels // Food Chemistry. 2015. Vol. 187. P. 507-516.
[58] Peralbo-Molina A., Priego-Capote F., Luque de Castro M.D. Comparison of extraction methods for exploitation of grape skin residues from ethanol distillation // Talanta. 2012. Vol. 101. P. 292-298.
[59] Teng H., Lee · W.Y. Optimization of Microwave-assisted Extraction of Polyphenols from Mulberry Fruits (Morus alba L.) Using Response Surface Methodology // Journal Korean Soc. Appl. Biol. Chem. 2013. Vol. 56. P. 317-324.
[60] Teng H., Lee W.Y., Choi Y.H. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus Coreanus Miq.) using response surface methodology // Journal Separation Science. 2013. Vol. 36. P. 3107-3114.
[61] Simsek M., Sumnu G., Sahin S. Microwave Assisted Extraction of Phenolic Compounds from Sour Cherry Pomace // Separation Science and Technology. 2012. Vol. 47. P. 1248-1254.
[62] Karabegović I.T., Stojičević S.S., Veličković D.T., Nikolić N.C., Lazić M.L. Optimization of Microwave-Assisted Extraction of Cherry Laurel Fruit. // Separation Science and Technology. 2014. Vol. 49. P. 416-423.
[63] Liu J.-L, Yuan J.-F., Zhang Z-Q. Microwave-assisted extraction optimised with response surface methodology and antioxidant activity of polyphenols from hawthorn (Crataegus pinnatifida Bge.) fruit // International Journal of Food Science and Technology. 2010. Vol. 45. P. 2400-2406.
[64] Pan Y., Wang K., Huang S., Wang H., Mu X., He C., Ji X., Zhang J., Huang F. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel // Food Chemistry. 2008. Vol. 106. P. 1264-1270.
[65] Ru Q., Cai R., He J. Comparison of Different Extraction Methods for Antioxidant Property of Flavonoids from Pomelo Peel // Advanced Materials Research. 2013. Vols. 652-654. P. 443-448.
[66] Mustapa A.N., Martin A, Gallego J.R., Mato R.B., Cocero M.J. Microwave-assisted extraction of polyphenols from Clinacanthus nutans Lindau medicinal plant: Energy perspective and kinetics modeling // Chemical Engineering and Processing. 2015. Vol. 97. P. 66-74.
[67] Bouras M., Chadni M., Barba F.J., Grimi N., Bals O., Vorobiev E. Optimization of microwave-assisted extraction of polyphenols from Quercus bark // Industrial Crops and Products. 2015. Vol. 77. P. 590-601.
[68] Liang H., Wang W., Xu J., Zhang Q., Shen Z., Zeng Z., Li Q. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. // Food and Bioproducts Processing. 2017. Vol. 104. P. 57-65.
[69] Spigno G., Tramelli L., De Faveri D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics // Journal of Food Engineering. 2007. Vol. 81, Issue 1. P. 200-208.
[70] Veggi P., Martinez J., Meireles M.A. Fundamentals of microwave extraction // In: Chemat, F., Cravotto G. (Eds.) Microwave-Assisted Extraction for Bioactive Compounds. Food Engineering Series. Springer, 2013. US. P. 15-52.
[71] www.cem.com
[72] www.milestone.com
[73] www.mls-mikrowellen.de
[74] www.biotage.com
[75] www.anton-paar.com
[76] www. sineomicrowave.com

Downloads

Published

2021-05-03