EFFECT OF THE POLYMER TEMPLATE MODIFICATION ON THE STUCTURE AND PROPERTIES OF THE COPPER NANOTUBES EMBEDDED IN COMPOSITE TRACK-ETCHED MEMBRANES

Authors

  • A. A. Mashentseva The Institute of Nuclear Physics of the Republic of Kazakhstan
  • K. O. Turapbay L.N.Gumilyov Eurasian National University
  • A. M. Temir L.N.Gumilyov Eurasian National University
  • A. L. Kozlovskiy L.N.Gumilyov Eurasian National University
  • A. R. Krekesheva L.N.Gumilyov Eurasian National University
  • A. S. Seytbayev L.N.Gumilyov Eurasian National University
  • D. T. Nurpeisova L.N.Gumilyov Eurasian National University

Keywords:

copper nanotubes, electroless template synthesis, oxidation pretreatment, track-etched composite membranes, p-nitrophenol reduction

Abstract

This paper is devoted to the study of the preliminary oxidative modification effects as well as activation and sensitization conditions of PET track etched membranes (TeMs) on the structure of copper nanotubes (NTs) synthesized by the electroless deposition approach. The structure and composition of the synthesized composite membranes was studied by advanced methods such as: UV-Vis spectroscopy, energy dispersive analysis, scanning electron microscopy, X-ray diffraction and gas permeability. The catalytic activity of Cu/PET TeM catalysts obtained under various deposition regimes has been studied using the benchmark reaction of the p-nitrophenol (p-NP) reduction in the presence of the sodium borohydride. It was shown that the highest value of the constant rate of the p-NP reduction reaction was determined for the composites prepared in the modified and double activated PET TeMs. In the temperature range of 16-35 °C, the effect of temperature on the rate of the p-NP dehydrogenation reaction in the presence of composite catalysts based on copper NTs was studiedand the activation energy values were calculated. the lowest values of Ea were determined for samples synthesized in a matrix of unmodified and simple activated PET TeMs.

References

[1] Stassi S., Cauda V., Ottone C., Chiodoni A., Pirri C.F., Canavese G. Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane // Nano Energy. 2015. Vol. 13. P. 474-481.
[2] Davenport M., Healy K., Siwy Z.S. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes // Nanotechnology. 2011. Vol. 22, N 15. P. 155301.
[3] Navitski A., Müller G., Sakharuk V., Cornelius T.W., Trautmann C., Karim S. Efficient field emission from structured gold nanowire cathodes // Eur Phys J Appl Phys. 2009. Vol. 48, N 3. P. 30502.
[4] Clochard M.C., El Jouad M., Bizière N., Chung P. Do, Drouhin H.J., Balanzat E., Lairez D., Viret M., Wegrowe J.E. Magnetic nanoconstrictions made from nickel electrodeposition in polymeric bi-conical tracks: Magneto-transport behavior // Radiat Phys Chem. 2014. Vol. 94, N 1. P. 66-71.
[5] Roh D.K., Patel R., Ahn S.H., Kim D.J., Kim J.H. Preparation of TiO2 nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells // Nanoscale. 2011. Vol. 3, N 10. P. 4162.
[6] Aditya T., Pal A., Pal T. Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts // Chem Commun. 2015. Vol. 51, N 46. P. 9410-9431.
[7] Pozun Z.D., Rodenbusch S.E., Keller E., Tran K., Tang W., Stevenson K.J., Henkelman G. A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles // J Phys Chem C. 2013. Vol. 117, N 15. P. 7598–7604.
[8] Dotzauer D.M., Bhattacharjee S., Wen Y., Bruening M.L. Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds // Langmuir. 2009. Vol. 25, N 3. P. 1865-1871.
[9] Borgekov D., Mashentseva A., Kislitsin S., Kozlovskiy A., Russakova A., Zdorovets M. Temperature dependent catalytic activity of Ag/PET ion-Track membranes composites // Acta Phys Pol A. 2015. Vol. 128, N 5. P. 871-874.
[10] Muench F., Lauterbach S., Kleebe H.-J., Ensinger W. Deposition of Nanofilms inside a Polymer Template: Formation of Metal Nanotubes // e-Journal Surf Sci Nanotechnol. 2012. Vol. 10, N 0. P. 578-584.
[11] Korolkov I. V., Borgekov D.B., Mashentseva A.A., Güven O., Atlcl A.B., Kozlovskiy A.L., Zdorovets M. V. The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites // Chem Pap. 2017. Vol. 71, N 12. P. 2353-2358.
[12] Muench F., Oezaslan M., Svoboda I., Ensinger W. Electroless plating of ultrathin palladium films: Self-initiated deposition and application in microreactor fabrication // Mater Res Express. 2015. Vol. 2, N 10. P. 105010.
[13] Schaefer S., Felix E.-M., Muench F., Antoni M., Lohaus C., Brötz J., Kunz U., Gärtner I., Ensinger W. NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyst with high noble metal utilisation // RSC Adv. 2016. Vol. 6, N 74. P. 70033-70039.
[14] Mashentseva A.A., Borgekov D.B., Niyazova D.T., Zdorovets M. V. Evaluation of the catalytic activity of the composite track-etched membranes for p-nitrophenol reduction reaction // Pet Chem. 2015. Vol. 55, N 10. P. 810-815.
[15] Kumar R., Kamakshi, Kumar M., Awasthi K. Functionalized Pd-decorated and aligned MWCNTs in polycarbonate as a selective membrane for hydrogen separation // Int J Hydrogen Energy. 2016. Vol. 41, N 48. P. 23057-23066.
[16] Ojha N.K., Zyryanov G. V., Majee A., Charushin V.N., Chupakhin O.N., Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis // Coord Chem Rev. 2017. Vol. 353. P. 1-57.
[17] Gawande M.B., Goswami A., Felpin F.-X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis // Chem Rev. 2016. Vol. 116, N 6. P. 3722-3811.
[18] Nam V., Lee D. Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review // Nanomaterials. 2016. Vol. 6, N 3. P. 47.
[19] Korolkov I. V., Mashentseva A.A., Güven O., Zdorovets M. V., Taltenov A.A. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process // Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2015. Vol. 365. P. 651-655.
[20] Bercu B., Enculescu I., Spohr R. Copper tubes prepared by electroless deposition in ion track templates // Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2004. Vol. 225, N 4. P. 497-502.
[21] Korolkov I. V., Mashentseva A.A., Güven O., Niyazova D.T., Barsbay M., Zdorovets M.V. The effect of oxidizing agents/systems on the properties of track-etched PET membranes // Polym Degrad Stab. Elsevier Ltd, 2014. Vol. 107. P. 150-157.
[22] Farooqi Z.H., Sakhawat T., Rauf Khan S., Kanwal F., Usman M., Begum R. Synthesis, characterization and fabrication of copper nanoparticles in N-isopropylacrylamide based co-polymer microgels for degradation of p-nitrophenol // Mater Sci Pol. 2015. Vol. 33, N 1. P. 185-192.
[23] Verma A.D., Mandal R.K., Sinha I. Kinetics of p-Nitrophenol Reduction Catalyzed by PVP Stabilized Copper Nanoparticles // Catal Letters. 2015. Vol. 145, N 10. P. 1885-1892.

Downloads

Published

2021-05-03