CHARACTERISTICS OF MICROWAVES, SOME ASPECTS THEORY OF MICROWAVE HEATING AND THE FIELD OF APPLICATION OF MICROWAVES IN ORGANIC CHEMISTRY AND CHEMISTRY OF NATURAL COMPOUNDS
Keywords:
microwave radiation, microwave heatingAbstract
The review considers the characteristics of microwaves, the theory of microwave heating in a comparative analysis with the features of thermal heating. The presented material shows the areas of use of the microwave radiation in organic chemistry and chemistry of natural compounds.
References
[1] Anastas P.T., Warner J.C. Green Chemistry: Theory and Practice. Oxford University Press: New York, 1998.
[2] Velikorodov A.V., Tyrkov A.G. Zelenaja himija. Metody, reagenty i innovacionnye tehnologii. Astrahan': «Astrahanskij universitet», 2010. 258 p.
[3] Sheldon R.A. Fundametals of green chemistry: Efficiency in reaction design // Chemical Society Reviews. 2012. Vol. 41, N 4. P. 1437-1451.
[4] Armenta S., Esteve-Turrillas F.A., Garrigues S., Guardia M. Green Analytical Chemistry: The Role of Green Extraction Techniques // Comprehensive Analytical Chemistry. 2017.
[5] Tobiszewski M., Namieśnik J. Greener organic solvents in analytical chemistry // Current Opinion in Green and Sustainable Chemistry. 2017. Vol. 5. P. 1-4
[6] Armenta S., Garrigues S., Guardia M. The role of green extraction techniques in Green Analytical Chemistry // TrAC Trends in Analytical Chemistry. 2015. Vol. 71. P. 2-8.
[7] Eskilsson C.S., BjÖrklund E. Analytical-scale microwave-assisted extraction // Journal of Chromatography A. 2000. Vol. 902. P. 227-250.
[8] Meshkov I.N., Chirikov B.V. Jelektromagnitnoe pole. Ch. 1. Jelektrichestvo i magnetizm. Novosibirsk: Nauka, 1987. 272 p.
[9] Mingos D.M.P., Baghurst D.R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry // Chemical Society Reviews. 1991. N 20. P. 1-47.
[10] Rahmankulov D.L., Bikbulatov I.H., Shulaev N.S., Shavshukova S.Ju. Microwave irradiation and the intensification of chemical processes. M.: Chemistry, 2003. 220 p.
[11] Kurbakova I.V. Microwave irradiation in analytical chemistry. opportunities and prospects of use // Uspehi himii. 2002. Vol. 71, N 4. P. 327-340.
[12] Neas E.D., Collins M.J. Introduction to microwave sample preparation. American Chemical Society: Washington D.C., 1988. Chap. 2. P. 7-32.
[13] Letellier M., Budzinski H. Microwave assisted extraction of organic compounds // Analusis. 1999. Vol. 27. P. 259-271.
[14] Arhangel'skij Ju.S., Devjatkin I.I. Sverhvysokochastotnye nagrevatel'nye ustanovki dlja intensifikacii tehnologicheskih processov. Saratov: Izd-vo SGU, 1983. 140 p.
[15] Smith F.E., Arsenault E.A. Microwave-assisted sample preparation in analytical chemistry // Talanta. 1996. Vol. 43, Issue 8. P. 1207-1268.
[16] Suard C., Mourel R-M., Cerdan B., Bart G., Feinberg M.H. Modeling energy transfer in a focused microwave digestor // Analytica Chimica Acta. 1996. Vol. 318, Issue 3. P. 261-273.
[17] Gabriel C., Gabriel S., Grant E.H, Grant E.H., Halstead B.S.J., Mingos D.M.P. Dielectric parameters relevant to microwave dielectric heating // Chem. Soc. Rev. 1998. Vol. 27. P. 213-224.
[18] www.scopus.com
[19] Abu-Samra A., Morris J.S., Koirtyohama S.R. Wet ashing of some biological samples in a microwave oven // Analytical Chemistry. 1975. Vol. 47. P. 1475-1477.
[20] Kurbakova I.V., Mjasoedova G.V., Eremin S.A., Pletnev I.V., Mohodoeva O.B., Morozova V.A., Hachatrjan K.S. Preparation of samples under microwave heating // Methods and objects of chemical analysis. 2006. Vol. 1, N 1. P. 27-34.
[21] Perino S., Petitcolas E., Guardia M., Chemat F. Portable microwave assisted extraction: An original concept for green analytical chemistry // Journal of Chromatography A. 2013. Vol. 1315. P. 200-203.
[22] Vinatoru M., Mason T.J., Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials // TrAC Trends in Analytical Chemistry. 2017. Vol. 97. P. 159-178.
[23] Li Y., Fabiano-Tixier A.S., Vian M.A., Chemat F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry // TrAC Trends in Analytical Chemistry. 2013. Vol. 47. P. 1-11.
[24] Calle I., Costas-Rodríguez M. Microwaves for Greener Extraction (Chapter 9) // The Application of Green Solvents in Separation Processes. 2017. P. 253-300.
[25] Kaufmann B., Christen P. Recent extraction techniques for natural products: microwaveassisted extraction and pressurized solvent extraction // Phytochemical Analysis. 2002. Vol. 13. P. 105-113.
[26] Zlotorzynski A. The Application of Microwave Radiation to Analytical and Environmental Chemistry // Critical Rev. Anal. Chem. 1995. Vol. 25, Issue 1. P. 43-76.
[27] Paré J.R.J., Bélanger J.M.R, Stafford S.S. Microwave-assisted process (MAP™): a new tool for the analytical laboratory // TrAC Trends in Analytical Chemistry. 1994. Vol. 13, Issue 4. P. 176-184.
[28] Camel V. Microwave-assisted solvent extraction of environmental samples // TrAC Trends in Analytical Chemistry. 2000. Vol. 19, Issue 4. P. 229-248.
[29] Markin V.I., Cheprasova M.Ju., Bazarnova N.G. The main directions of the use of microwave radiation during processing of plant raw materials // Chemistry of plant raw materials. 2014. N 4. P. 21-42.
[30] Mason T.J., Chemat F., Vinatoru M. The extraction of natural products using ultrasound or microwaves // Current Organic Chemistry. 2011. Vol. 15, N 2. P. 237-247.
[31] Kokolakis A.K., Golfinopoulos S.K. Microwave-assisted techniques (MATs); a quick way to extract a fragrance: A review // Natural Product Communications. 2013. Vol. 8, N 10. P. 1493-1504.
[32] Das A.K., Mandal V., Mandal S.C. A brief understanding of process optimisation in microwave-assisted extraction of botanical materials: Options and opportunities with chemometric tools // Phytochemical Analysis. 2014. Vol. 25, N 1. P. 1-12.
[33] Mandal V., Mohan Y., Hemalatha S. Microwave assisted extraction - An innovative and promising extraction tool for medicinal plant research // Pharmacognosy Reviews. 2007. Vol. 1, N 1. P. 7-18
[32] Zhang H-F., Yang X.-H., Wang Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions // Trends in Food Science and Technology. 2011. Vol. 22, Issue 12. P. 672-688.
[33] Chan C-H., Yusoff R., Ngoh Gek-C., Kung Wai-Lee F. Microwave-assisted extractions of active ingredients from plants // Journal of Chromatography A. 2011. Vol. 1218, Issue 37. P. 6213-6225.
[34] Luque de Castro M.D., Castillo-Peinado L.S. Microwave-Assisted Extraction of Food Components // Innovative Food Processing Technologies. 2016. Part 3. P. 57-110.
[35] Vadivambal R., Jayas D.S. Changes in quality of microwave-treated agricultural products-a review // Biosystems Engineering. 2007. Vol. 98, Issue 1. P. 1-16.
[36] Bundhoo Z.M.A., Mudhoo A., Mohee R. Promising unconventional pretreatments for lignocellulosic biomass // Critical Reviews in Environmental Science and Technology. 2013. Vol. 43, Issue 20. P. 2140-2211.
[37] Inan H., Turkay O., Akkiris C. Microwave and microwave-alkali effect on barley straw for total sugar yield // International Journal of Global Warming. 2014. Vol. 6, Issue. 2-3. P. 212-221.
[38] Kisurin I.V., Arapov K.A., Gushhin P.A., Ivanov E.V., Vinokurov V.A. Prospects for the use of microwave radiation in the process of processing cellulose-containing raw materials // Bashkir chemical journal. 2010. N 3. P. 167-170.
[39] Fan S.P., Jiang L.Q., Chia C.H., Fang Z., Zakaria S., Chee K.L. High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis // Bioresource Technology. 2014. Vol. 153. P. 69-78.
[40] Miura M., Kaga H., Sakurai A., Kakuchi T., Takahashi K. Rapid pyrolysis of wood block by microwave heating // Journal of Analytical and Applied Pyrolysis. 2004. Vol. 71, Issue 1. P. 187-199.
[41] Singh R., Tiwari S., Srivastava M., Shukla A. Experimental study on the performance of microwave assisted hydrogen peroxide (H2O2) pretreatment of rice straw // Agricultural Engineering International: CIGR Journal. 2014. Vol. 16, Issue 1. P. 173-181.
[42] Verma P., Watanabe T., Honda Y. Microwave-assisted pretreatment of woody biomass with ammonium molybdate activated by H2O2 // Bioresource Technology. 2011. Vol. 102, Issue 4. P. 3941-3945.
[43] Gedye R., Smith F., Westaway K., Ali H., Baldisera L., Laberge L., Rousell J. The use of microwave ovens for rapid organic synthesis // Tetrahedron Lett. 1986. Vol. 27, Issue 3. P. 279-282.
[44] Giguere R.J., Bray T.L., Duncan S.M., Majetich G. Application of commercial microwave ovens to organic synthesis // Tetrahedron Letters. 1986. Vol. 27, Issue 41. P. 4945-4948.
[45] Microwave Enhanced Chemistry: Fundamentals, Sample preparation and Applications. (Eds. Kingston H.M., Haswell S.J.). American Chemical Society, Washington DC, 1997.
[46] Whittaker A.G., Mingos D.M.P. The Application of Microwave Heating to Chemical Syntheses // Journal of Microwave Power and Electromagnetic Energy. 1994. Vol. 29, Issue 4. P. 195-219.
[47] Abramovich R.A. Applications of microwave energy in organic chemistry. A review // Organic preparation and procedures int. 1991. Vol 23, Issue 6. P. 685-711.
[48] Rahmankulov D.L., Shavshukova S.Ju., Latypova F.N. In the book: Panorama of modern chemistry of Russia. Modern organic synthesis. M.: Chemistry, 2003. P. 188-202.
[49] Gedye R.N., Smith F.E., Westaway K.G. The rapid synthesis of organic compounds in microwave ovens // Can. J. Chem. 1988. Vol. 66, Issue 1. P. 17-26.
[50] Strauss C.R., Trainor R.W. Developments in Microwave-Assisted Organic Chemistry // Australian Journal of Chemistry. 1995. Vol. 48, Issue 10. P. 1665-1692.
[51] Singh V., Kumar P., Sanghi R. Use of microwave irradiation in the grafting modification of the polysaccharides – A review // Progress in Polymer Science (Oxford). 2012. Vol. 37, Issue 2. P. 340-364.
[52] Guo Q., Sun D.-W., Cheng J.-H., Han Z. Microwave processing techniques and their recent applications in the food industry // Trends in Food Science and Technology. 2017. Vol. 67. P. 236-247.
[53] Ekezie F.-G.C., Sun D.-W., Han Z., Cheng J.-H. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments // Trends in Food Science and Technology. 2017. Vol. 67. P. 58-69.
[54] Mosqueda M.R., Tabil L.G., Meda V. Physico-chemical characteristics of microwavedried wheat distillers grain with solubles // The Journal of microwave power and electromagnetic energy: a publication of the International Microwave Power Institute. 2013. Vol. 47, Issue 3. P. 155-176.
[55] Palade P.A., Leuca T., Bandici L. Aspects regarding the processing of semi-manufactured wood in a microwave field // Journal of Electrical and Electronics Engineering. 2011. Vol. 4, Issue 1. P. 153-156.
[56] Majetich G., Wheless K. In Microwave Enhanced Chemistry: Fundamentals, Sample preparation and Applications. (Eds. Kingston H.M., Haswell S.J.). American Chemical Society, Washington DC., 1997. P. 474.
[57] Dema-Khalaf K., Morales-Rubio A., Guardia M. Rapid microwave assisted hydrolysis of formetanate // Analytica Chimica Acta. 1993. Vol. 281, Issue 2. P. 249-257.
[58] Chiou Sh-H., Wang K-T. Peptide and protein hydrolysis by microwave irradiation // Journal of Chromatography B: Biomedical Sciences and Applications. 1989. Vol. 491. P. 424-431.
[59] Engelhard M.G. In Microwave Enhanced Chemistry: Fundamentals, Sample preparation and Applications. (Eds. Kingston H.M., Haswell S.J.). American Chemical Society, Washington DC, 1997. P. 613.
[60] Kok L.P., Boon M.E. In Microwave Enhanced Chemistry: Fundamentals, Sample preparation and Applications. (Eds. Kingston H.M., Haswell S.J.). American Chemical Society, Washington DC, 1997. P. 641.
[61] Kurbakova I.V., Formanovskij A.A., Kudinova T.F., Kuz'min N.M. Microwave oxidation of organic substances with nitric acid // Journal of Analytical Chemistry. 1999. Vol. 54. P. 524.
[62] Kubrakova I.V., Formanovsky A.A., Kudinova T.F., Kuz’min N.M. Microwave-assisted nitric acid digestion of organic matrices // Mendeleev Communications. 1998. Vol. 8, Issue 3. P. 93-94.
[63] Peng F., Peng P., Xu F., Sun R.C. Fractional purification and bioconversion of hemicelluloses // Biotechnology Advances. 2012. Vol. 30, Issue 4. P. 879-903.
[64] Singh V., Kumar P., Sanghi R. Use of microwave irradiation in the grafting modification of the polysaccharides – A review // Progress in Polymer Science (Oxford). 2012. Vol. 37, Issue 2. P. 340-364.
[65] Goetz L.A., Sladky J.P., Ragauskas A.J. Analysis of microwave vs. thermally assisted grafting of poly(methyl-vinyl ether co-maleic acid)-polyethylene glycol to birch kraft pulp // Holzforschung. 2009. Vol. 63, Issue 4. P. 414-417.
[66] Chadlia A., Farouk M.M. Rapid homogeneous esterification of cellulose extracted from Posidonia induced by microwave irradiation // Journal of Applied Polymer Science. 2011. Vol. 119, Issue 6. P. 3372-3381.
[67] Cheprasova M.Ju., Markin V.I., Bazarnova N.G., Kaliuta E.V. Microwave oxidation of organic substances with nitric acid // Journal of Analytical Chemistry. 2013. 32 p.
[68] Cheprasova M.Ju., Markin V.I. Karboksimetilirovanie rastitel'nogo syr'ja pod vozdejstviem mikrovolnovogo izluchenija. Barnaul, 2014. 96 p.
[69] Zhang G.L., Zhang L., Deng H., Sun P. Preparation and characterization of sodium carboxymethyl cellulose from cotton stalk using microwave heating // Journal of Chemical Technology and Biotechnology. 2011. Vol. 86, Issue 4. P. 584-589.
[70] Shi H., Yin Y., Jiao S. Preparation and characterization of carboxymethyl starch under ultrasound-microwave synergistic interaction // Journal of Applied Polymer Science. 2014. Vol. 131, Issue 20. DOI: 10.1002/app.40906.
[71] Shavshukova S.Ju. Istoricheskie jetapy razvitija mikrovolnovoj tehniki dlja nauchnyh issledovanij i promyshlennyh processov: Avtoreferat diss. doktora teh. nauk. Ufa 2008. 48 p. (special'nost' 07.00.10 – Istorija nauki i tehniki.).
[72] Srogi K.A. Review: Application of Microwave Techniques for Environmental Analytical Chemistry // Analytical Letters. 2006. Vol. 39. P. 1261-1288