NEW INVESTIGATIONS IN ION-EXCHANGE MEMBRANES SYNTHESIS AND THEIR MODIFICATION

Authors

  • E. E. Ergozhin A.B. Bekturov Institute of chemical sciences
  • T. V. Kovrigina A.B. Bekturov Institute of chemical sciences
  • T. K. Chalov A.B. Bekturov Institute of chemical sciences
  • D. K. Tolemisova A.B. Bekturov Institute of chemical sciences
  • Ye. A. Melnikov A.B. Bekturov Institute of chemical sciences

Keywords:

ion exchange, ion-exchange membranes, membrane technology

Abstract

Ion exchange membranes (IEMs) have great potential in diverse applications and play prominent roles in addressing energy and environment related issues. Over the past decade, the development of IEMs has attracted much research attention in terms of materials, preparation and applications, due to their academic and industrial values. In this review, the advances in diverse IEM materials are summarized, providing insights into the fundamental strategies to achieve targeted properties. Apart from the intrinsic features of materials, optimized preparation methods are crucial to improve the quality of IEMs, which are discussed in detail. New IEM materials bring new applications, which are summarized in this review. Finally, the opportunities and challenges in the chemical stability of IEM materials, controllable fabrication of IEMs, and integration applications of IEMs are identified.

References

[1] Ran J., Wu L., He Yu., Yang Zh., Wang Ya., Jiang Ch., Ge L., Bakangura E., Xu T. Ion exchange membranes: New developments and applications // Journal of Membrane Science. 2017. Vol. 522. P. 267-291.
[2] Xu T., Wu D., Wu L. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)–A versatile starting polymer for proton conductive membranes (PCMs) // Progress in Polymer Science. 2008. Vol. 33. P. 894-915.
[3] Xu T. Ion exchange membranes: state of their development and perspective // Journal of Membrane Science. 2005. Vol. 263. P. 1-29.
[4] Ran J., Wu L., Ru Y., Hu M., Din L., Xu T. Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives // Polymer Chemistry. 2015. Vol. 6. P. 5809-5826.
[5] Wang W., Luo Q., Li B., Wei X., Li L., Yang Z. Recent progress in redox flow battery research and development // Advanced Functional Materials. 2013. Vol. 23. P. 970-986.
[6] Logan B.E., Elimelech M. Membrane-based processes for sustainable power generation using water // Nature. 2012. Vol. 488. P. 313-319.
[7] Lin B., Dong H., Li Y., Si Z., Gu F., Yan F. Alkaline stable C2-substituted imidazoliumbased anion-exchange membranes // Chemistry of Materials. 2013. Vol. 25. P. 1858-1867.
[8] Jasti A., Shahi V.K. Multi-block poly(arylene ether)s containing pre-choloromethylated bisphenol: anion conductive ionomers // Journal of Materials Chemistry. A 1. 2013. Vol. 6134.
[9] Gu S., Cai R., Luo T., Chen Z., Sun M., Liu Y., He G., Yan Y. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells // Angewandte Chemie International Edition. 2009. Vol. 48. P. 6499-6502.
[10] Gu S., Cai R., Yan Y. Self-crosslinking for dimensionally stable and solventresistant quaternary phosphonium based hydroxide exchange membranes // Chemical Communications. 2011. Vol. 47. P. 2856-2858.
[11] Zhang B., Gu S., Wang J., Liu Y., Herring A.M., Yan Y. Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes // RSC Advances. 2012. Vol. 2. P. 12683.
[12] Jiang L., Lin X., Ran J., Li C., Wu L., Xu T. Synthesis and properties of quaternary phosphonium-based anion exchange membrane for fuel cells // Chinese Journal of Chemistry. 2012. Vol. 30. P. 2241-2246.
[13] Disabb-Miller M.L., Zha Y., DeCarlo A.J., Pawar M., Tew G.N., Hickner M.A. Water uptake and ion mobility in cross-linked Bis(terpyridine)rutheniumbased anion exchange membranes // Macromolecules. 2013. Vol. 46. P. 9279-9287.
[14] Zha Y., Disabb-Miller M.L., Johnson Z.D., Hickner M.A., Tew G.N. Metal-cation-based anion exchange membranes // Journal of the American Chemical Society. 2012. Vol. 134. P. 4493-4496.
[15] Sata T., Yang W.K. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis // Journal of Membrane Science. 2002. Vol. 206. P. 31-60.
[16] Ge L., Liu X., Wang G., Wu B., Wu L., Bakangura E., Xu T. Preparation of proton selective membranes through constructing H+ transfer channels by acid–base pairs // Journal of Membrane Science. 2015. Vol. 475. P. 273-280.
[17] Ge L., Wu L., Wu B., Wang G., Xu T. Preparation of monovalent cation selective membranes through annealing treatment // Journal of Membrane Science. 2014. Vol. 459. P. 217-222.
[18] Lambert J., Avila-Rodriguez M., Durand G., Rakib M. Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective membranes // Journal of Membrane Science. 2006. Vol. 280. P. 219-225.
[19] Mulyati S., Takagi R., Fujii A., Ohmukai Y., Matsuyama H. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition // Journal of Membrane Science. 2012. Vol. 389. P. 324-333.
[20] Yasuda K., Yoshida T., Uchimoto Y., Ogumi Z., Takhara Z.-I. Enhancement of monovalent cation perm-selectivity of Nafion by plasma-induced surface modification // Chemistry Letters. 1992. P. 2013-2016.
[21] Nagarale R.K., Gohil G.S., Shahi V.K., Rangarajan R. Preparation and electrochemical characterizations of cation-exchange membranes with different functional groups // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004. Vol. 251. P. 133-140.
[22] Gohil G.S., Nagarale R.K., Binsu V.V., Shahi V.K. Preparation and characterization of monovalent cation selective sulfonated poly(ether ether ketone) and poly(ether sulfone) composite membranes // Journal of Colloid and Interface Science. 2006. Vol. 298. P. 845-853.
[23] Frilette V.J. Preparation and characterization of bipolar ion-exchange membranes // The Journal of Physical Chemistry A. 1956. Vol. 60. P. 435-439.
[24] Ramirez P., Rapp H.J., Reichle S., Strathmann H., Mafe S. Current-Voltage Curves of Bipolar Membranes // Journal of Applied Physics. 1992. Vol. 72. P. 259-264.
[25] Nie G., Li X., Tao J., Wu W., Liao S. Alkali resistant cross-linked poly(arylene ether sulfone)s membranes containing aromatic side-chain quaternary ammonium groups // Journal of Membrane Science. 2015. Vol. 474. P. 187-195.
[26] Yang Z., Guo R., Malpass-Evans R., Carta M., McKeown N.B., Guiver M.D., Wu L., Xu T. Highly Conductive Anion-exchange Membranes From Microporous Tröger’s Base Polymers // Angewandte Chemie International Edition. 2016. Vol. 55. P. 11499-11502.

Downloads

Published

2021-05-03