CHIRAL ORGANIC CATALYSTS IN THE DIELS-ALDER REACTION

Authors

  • E. G. Memmedbeyli Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan
  • I. G. Ayyubov Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan
  • G. E. Gadjiyeva Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan
  • S. V. Ismayilova Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan

Keywords:

diene synthesis, chiral organocatalysts, optically active compounds

Abstract

The analysis of scientific investigations in the field of application of chiral organic catalysts in the reaction of diene synthesis has been carried out. The directions of using of synthesized adducts in the different part of industry have been described. The effect of used catalysts to stereo- and enantioselectivity of reactions have been studied.

References

[1] Yamada H. Enantioselective Diels-Alder reaction catalyzed by chiral ammonium salts – the synthetic application and the design of new dienophiles // Graduate School of Engineering, Nagoya University. Japan, 2014. 124 p.
[2] Guo-Ming H., Huang C., Zulueta M. Unconventional exo-selectivity in thermal normalelectron-demand D-A reactions // Scientific Reports. 2016. N 6. P. 35147-35157.
[3] Funel J-A., Abele S. Industrial applications of the D-A reaction // Angew. Chem. Int. Ed. 2013. Vol. 52. P. 3822-3863.
[4] Nawrat C., Moody C. Quinones as dienophiles in the D-A reaction – history and applications in total synthesis // Angew. Chem. Int. Ed. 2014. Vol. 53. P. 2056-2077.
[5] Liu Z. ET EAL. Unique steric effect of germinal bis(silane) to control the high exoselectivity molecular D-A reaction // J. Amer. Chem. Soc. 2016. Vol. 138. P. 1877-1883.
[6] Li J-L., Chen Y., Liu T. Aminocatalytic asymmetric D-A reactions via HOMO activation // Acc. Chem. Res. 2012. Vol. 56. P. 1491-1500.
[7] Lestini E., Robertson K., Murphy C. Alternative mild route to the synthesis of 4-methylenecyclohex-2-enone – a key moiety of the anticancer compounds attelione A and B // Synth. Commun. 2012. Vol. 42. P. 1864-1876.
[8] Aiaz A. et al. Concerted stepwise mechanisms in dehydro-D-D reactions // J. Org. Chem. 2011. Vol. 76. P. 9320-9328.
[9] Fernandez I. Combined activation strain model and energy decomposition analysis methods – a new way to understand pericyclic reactions // Phys. Chem. Phys. 2014. Vol. 16. P. 7662-7671.
[10] Mellberg A. Chiral carbocations as Lewis acid catalysts in D-A reactions // Master Thesis in Chemistry, KTH Stockholm. Swedenm, 2012. 115 p.
[11] Hoye T. // The pentadehydro-D-A reaction // Nature. 2016. Vol. 532. P. 484-488.
[12] Bodnar B., Miller M. The nitrocarbonyl hetero-D-A reaction as a useful tool for organic synthesis // Angew. Chem. Int. Ed. 2011. Vol. 50. P. 5630-5647.
[13] Wende R., Schreiner P. Evalution of asymmetric organocatalysis – multi- and retrocatalysis // Green Chemistry. 2012. Vol. 14. P. 1821-1849.
[14] Shen Z., Cheong H., Lai Y. Application of recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective D-A reactions // Green Chemistry. 2012. Vol. 14. P. 2626-2630.
[15] Guizeetti S., Benaglia M., Siegel J. Poly(methylhydrosiloxane)-supported chiral imidazolidinones – new versatile, highly efficient and recyclable organocatalysts for stereoselective D-A cycloaddition reactions // Chem. Commun. 2012. Vol. 48. P. 3188-3190.
[16] Negishi E., Shiping X. Catalytic enantioselective synthesis of chiral organic compounds of ultra-high purity of more 99 % e.e. // Proc. Japan Acad., Ser. B. 2015. Vol. 91, N 8. P. 349-374.
[17] Ricci A. Asymmetric organocatalysis at the service of medicinal chemistry // Organic Chemistry. 2014. N 7. P. 1-29.
[18] Jiang X., Wang R. Recent development in catalytic asymmetric inverse-electron-demand D-A reaction // Chem. Rev. 2013. Vol. 113, N 7. P. 5515-5546.
[19] Held F., Tsigoyeva S. Asymmetric cycloaddition reactions catalyzed by bifunctional thiourea and squaramide organocatalysts – recent advances // Catal. Sci. Technol. 2016. Vol. 6. P. 645-667.
[20] Bartelson K., Singh R., Foxman D. Catalytic asymmetric [4+2]-additions with aliphatic nitroalkenes // Chem. Sci. 2011. Vol. 2, N 10. P. 1940-1944.
[21] Fen T., Jiarong C., Ping W., Wenjing X. Asymmetric D-A reaction of 2-arylidene-1,3indanediones with 2-vinylindoles catalyzed by a Sc(OTf)3/bis(oxazoline) complex – enantioselective synthesis of tetrahydrocarbazole spiro indanedione derivatives // Acta Chimica Sinica. 2016. Vol. 72, N 7. P. 836-840.
[22] Kuo C-H., Niemeyer C., Fruk L. Bimetallic copper-heme-protein-DANN hybrid catalyst for D-A reaction // Croat. Chem. Acta. 2011. Vol. 24, N 2. P. 269-275.
[23] Peng Z., Narcis M., Takenaka N. Enantio- and periselective nitroalkene D-A reactions catalyzed by helical-chiral hydrogen bond donor catalysts // Molecules. 2013. Vol. 18. P. 9982-9998.
[24] Hatano M., Hayashi K., Sakamoto T. Enantioselective D-A reaction induced by chiral supramolecular Lewis acid catalysts based on CN….B and PO…B coordination bonds // Synlett. 2016. Vol. 27, N 7. P. 1061-1067.
[25] Kaminska B., Pazik A. Chiral Schiff base complexes as an effective catalyst in D-A reactions.// Advances in Chemical and Mechanical Engineering. 2012. Vol. 1. P. 235-240.
[26] Xu H., Zhang H., Jacobsen E. Chiral sulfinamidourea and strong Brensted acid-cocatalyzed enantioselective Povarov reaction to access tetrahydroquinolines // Nature Protocols. 2014. Vol. 9. P. 1860-1864.
[27] Xuan W., Botuha C., Hasenknorf B. Chiral Dawson-type hybrid polyoxometallate catalyzed enantioselective D-A reactions // Chemistry. A European Journal. 2015. Vol. 21, N 46. P. 16512-16516.
[28] Qiao S., Junming M., Wilcox C. Chiral GAP-catalysts of phosphonylated imidazolidinones and their applications in asymmetric D-A and Friedel-Crafts reactions // Organic and Biomolecular Chemistry. 2017. N 7. P. 111-117.
[29] Mirgane N., Kamik A. Asymmetric D-A reaction involving chiral benzimidazoles as organocatalysts // Chirality. 2011. Vol. 23, N 5. P. 404-407.
[30] Gatzenmeier T., Gemmeren M., Haffer D. Asymmetric Lewis acid organocatalysts oft he D-A reaction by a silylated C-H acid // Science. 2016. Vol. 351. P. 949-952.
[31] Haraguchi N., Nguyen T., Shimichi I. Polyesters containing chiral imidazolidinone salts in polymer main chain – heterogeneous organocatalysts for the asymmetric D-A reaction // Chem, Cat. Chem. 2017. Vol. 9, N 19. P 3786-3794.
[32] Haraguchi N., Kiyono N., Shinichi I. Design of main chain polymers of chiral imidazolidinone for asymmetric organocatalysis application // Chem. Commun. 2012. N 33. P. 427-434.
[33] Srivastava V. Ionic-liquid-mediated MacMillans catalyst for D-A reaction // Journal of Chemistry. 2013. Vol. 13. P. 930-951.
[34] Brase S., Volz N., Glaser F. Highly enantioselective access to cannabinaid-type tricycles by organocatalytic D-A reactions // Bellstein J. Org. Chem. 2912. Vol. 8. P. 1385-1392.
[35] Li J., Chen T., Liu T. Aminocatalytic asymmetric D-A reactions via HOMO activation // Acc. Chem. Res. 2012. Vol. 45, N 9. P. 1491-1500.
[36] Jang E. Synthesis of water soluble catalysts for the enantioselective hetero-D-A reactions // Abstracts of Texas University. USA, 2015. P. 121.
[37] Masahiro T. Enantioselective carbon-carbon bond forming reactions catalyzed by chiral phosphoric acid catalysts. // Current Orgamic Chemistry. 2011. Vol. 15, N 13. P. 2174-2186.
[38] Li N., Xianrui L., Weike S. New insights into the asymmetric D-A reaction – the endo- and S-selective retro-D-A reaction // RSC Advances. 2015. N 5. P. 106234-106238.
[39] Tanaka K., Nagase S., Anami T. Enantioselective D-A reaction in the confined space of homochiral metal-organic frameworks // RSC Advances. 2016. N 6. P. 111436-111439.
[40] Eschenbrenner V. An enantioselective inverse-electron-demand D-A reaction // Angew. Chem. Int. Ed. Engl. 2014. Vol. 53, N 8. P. 2134-2137.
[41] Haipeng H., Yangbin L., Jing G. Enantioselective synthesis of dihydrocoumarin derivatives by chiral Sc(III)-complex catalyzed in inverse-electron-demand hetero-D-A reaction // Chem. Commun. 2015. Vol. 51, N 8. P. 3835-3837.
[42] Rueping M., Raja S. Asymmetric Brensted acid-catalyzed aza-D-A reaction of cyclic C-acylimines with cyclopentadiene // Bellstein J. Org. Chem. 2012. Vol. 8. P. 1819-1824.
[43] Reboredo S., Parra A. Trienamines – their key role in extended organocatalysis for D-A reactions // Asymmetric organocatalysis. 2013. N 1. P. 24-31.

Downloads

Published

2021-05-03