SEMIPERMEABLE MEMBRANES FOR MEMBRANE TECHNOLOGIES

Authors

  • E. E. Ergozhin A.B. Bekturov Institute of chemical sciences
  • T. K Chalov A.B. Bekturov Institute of chemical sciences
  • T. V. Kovrigina A.B. Bekturov Institute of chemical sciences
  • Ye. A. Melnikov A.B. Bekturov Institute of chemical sciences

Keywords:

membrane technology, microfiltration, ultrafiltration, nanofiltration, reverse osmosis

Abstract

The review shows membrane technologies based on the principle of baromembrane processes (microfiltration, ultrafiltration, nanofiltration, reverse osmosis are considered and are increasingly used in industrial use and household purposes). Their main feature is the presence of a semipermeable membrane based on ceramics, polymers or nanocarbon materials with selective permeability for certain components of the separated mixture (charged metal cations, molecules of organic substances, bacteria, viruses).

References

[1] Yoshinobu Tanaka. Ion Exchange Membranes: Fundamentals and Applications. 2nd edition. Amsterdam, Netherlands: Elsevier Ltd, 2015. 522 p.
[2] Toshikatsu Sata. Ion Exchange Membranes Preparation, Characterization, Modification and Application. Cambridge, UK, 2004. 324 p.
[3] Zhong M., Su P.-K., Lai J.-Y., Liu Y.-L. Organic solvent-resistant and thermally stable polymeric microfiltration membranes based on crosslinked polybenzoxazine for size-selective particle separation and gravity-driven separation on oil-water emulsions // Journal of Membrane Science. 2018. Vol. 550. P. 18-25.
[4] Kang G., Cao Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review // Journal of Membrane Science. 2014. Vol. 463. P. 145-165.
[5] Zhu Y., Xie W., Zhang F., Xing T., Jin J. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation // Applied Materials & Interfaces. 2017. Vol. 9. P. 9603-9613.
[6] Skale T., Hohl L., Kraume M., Drews A. Feasibility of w/o pickering emulsion ultrafiltration // Journal of Membrane Science. 2017. Vol. 535. P. 1–9.
[7] Soroco I., Makowski M., Spill F., Livingston A. The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part B: analysis of evaporation step and the role of a co-solvent // Journal of Membrane Science. 2011. Vol. 381. P. 163-171.
[8] Dutczak S.M., Cuperus F.P., Wessling M., Stamatialis D.F. New crosslinking method of polyamide–imide membranes for potential application in harsh polar aprotic solvents // Separation & Purification Technology. 2013. Vol. 102. P. 142-146.
[9] Wu D., Xu F., Sun B., Fu R., He H., Matyjaszewski K. Design and preparation of porous polymers // Chemical Reviews. 2012. Vol. 112. P. 3959-4015.
[10] Lin C.-H., Chang S.-L., Shen T.-Y., Shih Y.-S., Lin H.-T., Wang C.-F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies // Polymer Chemistry. 2012. Vol. 3. P. 935-945.
[11] Lin C.-H., Chang S.-L., Shen T.-Y., Shih Y.-S., Lin H.-T., Wang C.-F. A study on hydrogen-bonded network structure of polybenzoxazines // The Journal of Physical Chemistry A. 2012. Vol. 106. P. 3271-3280.
[12] Liao Y.-L., Hu C.-C., Lai J.-Y., Liu Y.-L. Crosslinked polybenzoxazine based membrane exhibiting in-situ self-promoted separation performance for pervaporation dehydration on isopropanol aqueous solutions // Journal of Membrane Science. 2017. Vol. 531. P. 10–15.
[13] Tian J., Wu C., Yu H., Gao Sh., Li G., Cui F., Qu F. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water // Water Research. 2018. Vol. 132. P. 190-199.
[14] Yu W., Graham N.J., Fowler G.D. Coagulation and oxidation for controlling ultrafiltration membrane fouling in drinking water treatment: Application of ozone at low dose in submerged membrane tank // Water research. 2016. Vol. 95. P. 1-10.
[15] Wei D., Tao Y., Zhang Z., Liu L., Zhang X. Effect of in-situ ozonation on ceramic UF membrane fouling mitigation in algal-rich water treatment // Journal of Membrane Science. 2016. Vol. 498. P. 116-124.
[16] Shao S., Liang H., Qu F., Li K., Chang H., Yu H., Li G. Combined influence by humic acid (HA) and powdered activated carbon (PAC) particles on ultrafiltration membrane fouling // Journal of Membrane Science. 2016. Vol. 500. P. 99-105.
[17] Franck-Lacaze L., Bonnet C., Besse S., Lapicque F. Effects of ozone on the performance of a polymer electrolyte membrane fuel cell // Fuel Cells. 2009. Vol. 9(5). P. 562-569.
[18] Ling L., Zhang D., Fan C., Shang C. A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms // Water Research. 2017. Vol. 124. P. 446-453.
[19] Xie P., Ma J., Liu W., Zou J., Yue S., Li X., Wiesner M.R., Fang J. Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals // Water Research. 2015. Vol. 69. P. 223-233.
[20] Liu B., Qu F., Chen W., Liang H., Wang T., Cheng X., Yu H., Li G., Van der Bruggen B. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy // Water Research. 2017. Vol. 125. P. 72-80.
[21] Cheng X., Liang H., Ding A., Tang X., Liu B., Zhu X., Gan Z., Wu D., Li G. Ferrous iron/peroxymonosulfate oxidation as a pretreatment for ceramic ultrafiltration membrane: Control of natural organic matter fouling and degradation of atrazine // Water Research. 2017. Vol. 113. P. 32-41.
[22] Dhaka S., Kumar R., Khan M.A., Paeng K.-J., Kurade M.B., Kim S.-J., Jeon B.-H. Aqueous phase degradation of methyl paraben using UV-activated persulfate method // Chemical Engineering Journal. 2017. Vol. 321. P. 11-19.
[23] Yang Y., Lu X.L., Jiang J., Ma J., Liu G., Cao Y., Liu W., Li J., Pang S., Kong X., Luo C. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate // Water Research. 2017. Vol. 118. P. 196-207.
[24] Yangali-Quintanilla V., Maenga S.K., Fujioka T., Kennedy M., Amy G. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse // Journal of Membrane Science. 2010. Vol. 362. P. 334–345.
[25] Semiao A.J.C., Schafer A.I. Removal of adsorbing estrogenic micropollutants by nanofiltration membranes. Part A – Experimental evidence // Journal of Membrane Science. 2013. Vol. 431. P. 244-256.
[26] Semiao A.J.C., Foucher M., Schafer A.I. Removal of adsorbing estrogenic micropollutants by nanofiltration membranes: Part B – Model development // Journal of Membrane Science. 2013. Vol. 431. P. 257-266.
[27] Drazevic E., Bason S., Košutic K., Freger V. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes // Environmental Science & Technology. 2012. Vol. 46. P. 3377-3383.
[28] Nabe A., Staude E., Belfort G. Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions // Journal of Membrane Science. 1997. Vol. 33. P. 57-72.
[29] Norberg D., Hong S., Taylor J., Zhao Y. Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes // Desalination. 2007. Vol. 202. P. 45-52.
[30] Tang C.Y., Kwon Y.-N., Leckie J.O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry // Desalination. 2009. Vol. 242. P. 149-167.
[31] Drazevic E., Košutic K., Fingler S., Drevenkar V. Removal of pesticides from the water and their adsorption on the reverse osmosis membranes of defined porous structure // Deswater. 2011. Vol. 30. P 161-170.
[32] Drazevic E., Košutic K., Dananic V., Pavlovic D.M. Coating layer effect on performance of thin film nanofiltration membrane in removal of organic solutes // Separation and Purification Technology. 2013. Vol. 118. P. 530-539.
[33] Bernstein R., Belfer S., Freger V. Toward improved boron removal in RO by membrane modification: feasibility and challenges. // Environmental Science & Technology. 2011. Vol. 45. P. 3613-3620.
[34] Ben-David A., Bason S., Jopp J., Oren Y., Freger V. Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: correlation to rejection // Journal of Membrane Science. 1997. Vol. 281. P. 480-490.
[35] Roy Ya., Warsinger D.M., J.H., Lienhard V. Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electromigration // Desalination. 2017. Vol. 420. P. 241-257.
[36] Misdan N., Lau W.J., Ismail A.F., Matsuura T. Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics // Desalination. 2013. Vol. 329. P. 9-18.
[37] Subramani A., Badruzzaman M., Oppenheimer J., Jacangelo J.G. Energy minimization strategies and renewable energy utilization for desalination: a review // Water Research. 2011. Vol. 45. P. 1907-1920.
[38] Wang Y., Wang S., Xu S. Experimental studies on dynamic process of energy recovery device for RO desalination plants // Desalination. 2004. Vol. 160. P. 187-193.
[39] McHarg J. The evolution of SWRO energy-recovery systems // Desalination & Water Reuse Quarterly. 2002. Vol. 11. P. 48-53.
[40] Stover R.L. Seawater reverse osmosis with isobaric energy recovery devices // Desalination. 2007. Vol. 203. P. 168-175.
[41] Stover R.L., Andrews B. Isobaric energy-recovery devices: past, present, and future // IDA Journal of Desalination and Water Reuse. 2012. Vol. 4. P. 38-43.
[42] Eshoul N., Agnew B., Al-Weshahi M., Atab M. Exergy analysis of a two-pass reverse osmosis (RO) desalination unit with and without an energy recovery turbine (ERT) and pressure exchanger (PX) // Energies. 2015. Vol. 8. P. 6910-6925.
[43] Liu N., Liu Z.L., Li Y.X., Sang L.X. Development and experimental studies on a fullyrotary valve energy recovery device for SWRO desalination system // Desalination. 2016. Vol. 397. P. 67-74.
[44] Cameron I.B., Clemente R.B. SWRO with ERI's PX pressure exchanger device – a global survey // Desalination. 2008. Vol. 221. P. 136-142.
[45] Zhou J., Wang Y., Duan Y., Tian J., Xu S. Capacity flexibility evaluation of a reciprocating-switcher energy recovery device for SWRO desalination system // Desalination. 2017. Vol. 416. P. 45-53.
[46] Stover R.L. Development of a fourth generation energy recovery device. A CTO's notebook // Desalination. 2004. Vol. 165. P. 313-321.
[47] Stover R.L. Retrofits to improve desalination plants // Desalination and Water Treatment. 2010. Vol. 13. P. 33-41.
[48] Mei C.C., Liu Y.H., Law A.W.K. Theory of isobaric pressure exchanger for desalination // Desalination and Water Treatment. 2012. Vol. 39. P. 112-122.
[49] Cao Z., Deng J., Yuan W., Chen Z. Integration of CFD and RTD analysis in flow pattern and mixing behavior of rotary pressure exchanger with extended angle // Desalination and Water Treatment. 2015. Vol. 57. P. 15265-15275.
[50] Zhou Y., Ding X., Ju M., Chang Y. Numerical simulation on a dynamic mixing pro- cess in ducts of a rotary pressure exchanger for SWRO // Desalination and Water Treatment. 2009. Vol. 1. P. 107-113.
[51] Xu E.L., Wang Y., Wu L.M., Xu S.C., Wang Y.X., Wang S.C. Computational fluid dynamics simulation of brine-seawater mixing in a rotary energy recovery device // Industrial & Engineering Chemistry Research. 2014. Vol. 5. P. 18304-18310.
[52] Liu K., Deng J., Ye. F. Visualization of flow structures in a rotary type energy recovery device by PIV experiments // Desalination. 2018. Vol. 433. P. 33-40

Downloads

Published

2021-05-03