"GREEN" DIRECTIONS MICROWAVE EXTRACTION IN CHEMISTRY OF NATURAL COMPOUNDS

2-nd Report: Environmental factors of microwave extraction

Authors

  • T. V. Kharlamova A.B. Bekturov Institute of chemical sciences

Keywords:

natural compounds, microwave extraction, environmental factors

Abstract

The last decade marked by intensive use of microwave radiation for solving various problems of analytical chemistry, which one of the directions is extraction. At present, microwave extraction (microwave-assisted extraction (MAE)) has been taking the position of one of the most effective methods for the isolation of natural and biologically active compounds. The current trend of its development is the development and implementation of innovative approaches to the extraction of biologically active substances that comply the principles of "green chemistry". Factors affecting the environmental friendliness of microwave extraction include those associated with hazardous reagents, the amount of waste, safety, energy consumed and environmental impact.

References

[1] Abu-Samra A., Morris J.S., Koirtyohama S.R. Wet ashing of some biological samples in a microwave oven // Analytical Chemistry. 1975. Vol. 47, Issue 8. P. 1475-1477.
[2] Smith F.E., Arsenault E.A. Microwave-assisted sample preparation in analytical chemistry // Talanta. 1996. Vol. 43, Issue 8. P. 1207-1268.
[3] Letellier M., Budzinski H. Microwave assisted extraction of organic compounds // Analusis. 1999. Vol. 27. P. 259-271
[4] Chan C.-H., Yusoff R., Ngoh G.-C., Kung F.W.-L. Microwave-assisted extractions of active ingredients from plants // Journal of Chromatography A. 2011. Vol. 1218, Issue 37. P. 6213-6225.
[5] Mandal V., Mohan Y., Hemalatha S Microwave assisted extraction - An innovative and promising extraction tool for medicinal plant research // Pharmacognosy Reviews. 2007. Vol. 1, N 1. P. 7-18
[6] Luque-García J.L., Luque de Castro M.D. Where is microwave-based analytical equipment for solid sample pre-treatment going? // TrAC, Trends in Analytical Chemistry. 2003. Vol. 22, Issue 2. P. 90-98.
[7] Mandal V., Tandey R. A critical analysis of publication trends from 2005-2015 in microwave assisted extraction of botanicals: how far we have come and the road ahead. // TrAC Trends Anal. Chem. 2016. Vol. 82. P. 100-108.
[8] Flo´rez N., Conde E., Domı´nguez H. Microwave assisted water extraction of plant compounds // J. Chem. Technol. Biotechnol. 2015. Vol. 90. P. 590-607.
[9] Chen Y., Xie M.Y., Gong X.F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum // Journal of Food Engineering. 2007. Vol. 81, Issue 1. P. 162-170.
[10] Kwon J., Lee G., Belanger J.M.R., Pare J.R.J. Effect of ethanol concentration on the efficiency of extraction of ginseng saponins when using a microwave assisted process // Journal of Food Science and Technology. 2003. Vol. 38. P. 615-622.
[11] Zheng X., Wang X., Lan Y., Shi J., Xue S.J., Liu C. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds // Sep. Purif. Technol. 2009. Vol. 70, Issue 1. P. 34-40.
[12] Yang Y.C., Li J., Zu Y.G., Fu Y.J, Luo M., Wu N., Liu X.L. Optimisation of microwaveassisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity // Food Chemistry. 2010. Vol. 122, Issue 1. P. 373-380.
[13] Xie D.-T., Wang Y-Q., Kang Y., Hu Q.-F., Su N.-Y., Huang J.-M., Che C.-T., Guo J.-X. Microwave-assisted extraction of bioactive alkaloids from Stephania sinica // Separation and Purification Technology. 2014. Vol. 130. P. 173-181.
[14] Alara O.R., Abdurahman N.H., Olalere O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology // Food and Bioproducts Processing. 2018. Vol. 107. P. 36-48.
[15] Li H., Chen B., Zhang Z., Yao S. Focused microwaveassisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies) // Talanta. 2004. Vol. 63, Issue 3. P. 659-665.
[16] Zhou H.-Y., Liu C.-Z. Microwave assisted extraction of solanesol from tobacco leaves // Journal of Chromatography A. 2006. Vol. 1129, Issue 1. P. 135-139.
[17] Li T., Zhang Z., Zhang L., Huang X., Lin J., Chen G. An improved facile method for extraction and determination of steroidal saponins in Tribulus terrestris by focused microwaveassisted extraction coupled with GC–MS // Journal of Separation Science. 2009. Vol. 32, Issue 2324. P. 4167.
[18] Hu Z., Cai M., Liang H.H. Desirability function approach for the optimization of microwave-assisted extraction of saikosaponins from Radix Bupleuri // Separation and Purification Technology. 2008. Vol. 61, Issue 3. P. 266-275.
[19] Anastas P. T., Warner J. C. Green Chemistry: Theory and Practice. Oxford University Press: New York, 1998.
[20] Sheldon R.A. Fundametals of green chemistry: Efficiency in reaction design // Chemical Society Reviews. 2012. Vol. 41, N 4. P. 1437-1451.
[21] Armenta S., Garrigues S., Guardia M. The role of green extraction techniques in Green Analytical Chemistry // ТrAC Trends in Analytical Chemistry. 2015. Vol. 71. P. 2-8.
[22] Bourne R.A., Poliakoff M. Green chemistry: what is the way forward? // Mendeleev Communication. 2011. Vol. 21, Issue 5. P. 235-238
[23] Spietelun Ł. Marcinkowski, Guardia M., Namieśnik J. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry // J. Chromatogr. A. –2013. Vol. 1321. P. 1-13.
[24] Henderson R.K., Jimenez-Gonzalez C., Constable D.J.C., Alston S.R., Inglis G.G.A., Fisher G., Sherwood J., Binks S.P., Curzons A.D. Expanding GSK's solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry // Green Chem. 2011. Vol. 13, Issue4. P. 854-862.
[25] Prat D., Pardigon O., Flemming H.-W., Letestu S., Ducandas V., Isnard P., Guntrum E., Senac T., Ruisseau S., Cruciani P., Hosek P. // Org. Process Res. Dev. 2013. Vol. 17. P. 1517-1525.
[26] Alfonsi K., Colberg J., Dunn P.J., Fevig T., Jennings S., Johnson T.A., Kleine H.P., Knight C.,. Nagy M.A, Perry D.A., Stefaniak M. Green chemistry tools to influence a medicinal chemistry and research chemistry based organization // Green Chem. 2008. Vol.10, Issue 1. P. 31-36.
[27] Prat D., Wells A., Hayler J., Sneddon H., McElroy C.R., Abou-Shehada S., Dunn P.J.
CHEM21 selection guide of classical- and less classical-solvents // Green Chem. 2016. Vol. 18. P. 288-296.
[28] Tobiszewski M., Tsakovski S., Simeonov V., Namieśnik J., Pena-Pereira F. A solvent selection guide based on chemometrics and multicriteria decision analysis // Green Chem. 2015.
Vol. 17, Issue 10. P. 4773-4785.
[29] Jessop P.G. Searching for green solvents // Green Chem. 2011. Vol. 13, Issue 6. P. 13911398.
[30] Capello C., Fischer U., Hungerbühler K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents // Green Chem. 2007. Vol. 9, Issue 9. P. 927-934.
[31] Tobiszewski M., Namieśnik J. Scoring of solvents used in analytical laboratories by their toxicological and exposure hazards // Ecotoxicology and Environmental Safety. 2015. Vol. 120. P. 169-173.
[32] Gałuszka A., Migaszewski Z., Namiesnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices // Trends Anal. Chem.
2013. Vol. 50. P. 78–84.
[33] Tobiszewski M. Metrics for green analytical chemistry // Analytical methods. 2016.
Vol. 15, Issue 8. P. 2993-2999.
[34] Mingos D.M.P., Baghurst D.R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry // Chemical Society Reviews. 1991. Vol. 20. P. 1-47.
[35] Bampouli A., Kyriakopoulou K., Papaefstathiou G., Louli V., Aligiannis N., Magou- las K., Krokida M. Evaluation of total antioxidant potential of Pistacia lentiscus var. chia leaves extracts using UHPLC–HRMS // Journal of Food Engineering. 2015. Vol. 167. P. 25-31.
[36] Yang Y.C., Li J., Zu Y.G., Fu Y.J, Luo M., Wu N., Liu X.L. Optimisation of microwaveassisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity // Food Chemistry. 2010. Vol. 122, Issue 1. P. 373-380.
[37] Alara O.R., Abdurahman N.H., Olalere O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology // Food and Bioproducts Processing. 2018. Vol. 107. P. 36-48.
[38] Kharlamova Т.V., Praliyev К.D. Microwave radiation, its influence on solutions and use for extraction of components of plant material. 1-st Report. The systems of microwave-assisted extraction and their application for extraction of natural compounds // Chemical Journal of Kazakhstan. 2018. N 4. P. 76-98.
[39] Kharlamova Т.V. Microwave radiation, its influence for solutions and use for extractions of components of plant materials. 2-nd Report. The interaction of microwave radiation with plant material and factors affecting the process of extraction of natural compounds // Chemical Journal of Kazakhstan. 2019. N 1. P. 242-268.
[40] Mandal V., Mohan Y., Hemalatha S. Microwave assisted extraction - An innovative and promising extraction tool for medicinal plant research // Pharmacognosy Reviews. 2007. Vol. 1, N 1. P. 7-18.
[41] Zhou H.Y., Liu C.Z. Microwave-assisted extraction of solanesol from tobacco leaves // J. Chromatogr. A. 2006. Vol. 1129, Issue 1. P. 135-138.
[42] Sterbova D., Matejicek D., Vlcek J., Kuban V. Combined microwave assisted isolation and solid- phase purification procedures prior to the chromatographic determination of phenolic compounds in plant materials // Analytica Chimica Acta. 2004. Vol. 513, Issue 2. P. 435-444.
[43] Yang Z., Zhai W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS // Innovative Food Science & Emerging Technologies. 2010. Vol. 11, Issue 3. P. 470-476.
[44] Peralbo-Molina A., Priego-Capote F., Luque de Castro M.D. Comparison of extraction methods for exploitation of grape skin residues from ethanol distillation // Talanta. 2012. Vol. 101. P. 292-298
[45] Gai Q.-Y., Jiao J., Mu P.-S., Wang W., Luo M., Li C.-Y. Microwave-assisted aqueous enzymatic extraction of oil from Isatis indigotica seeds and its evaluation of physicochemical properties, fatty acid compositions and antioxidant activities // Ind. Crops Prod. 2013. Vol. 45. P. 303-311.
[46] Zhou H.-Y., Liu C.-Z. Microwave assisted extraction of solanesol from tobacco leaves. // Journal of Chromatography A. 2006. Vol. 1129, Issue 1. P. 135-139.
[47] Pan X., Liu H., Jia G., Shu Y.Y. Microwave assisted extraction of glycyrrhizic acid from licorice root // Biochemical Engineering Journal. 2000. Vol. 5. P. 173-177.
[48] Gałuszka A., Migaszewski Z., Namiesnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices // Trends Anal. Chem. 2013. Vol. 50. P. 78–84.
[49] Kharlamova Т.V. "Green" directions of microwave extraction in the chemistry of natural compounds 1-st Report Methods for assessing the environmental performance of analytical procedures // Chemical Journal of Kazakhstan. 2019. N 3. P. 242-268.
[50] Raynie D., Driver J.L. Green Assessment of Chemical Methods // 13th Annual Green Conference. June 23-25, 2009, College Park, Maryland, USA. Available from URL: http://acs.confex.com/acs/green09/recordingredirect.cgi/id/457. (Accessed 18.03.19).
[51] Aken K.V., Strekowski L., Patiny L. Eco-scale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters // Beilstein J. Org Chem. 2006. Vol. 2. P. 1-7.
[52] Tobiszewski М., Marć M., Gałuszka A., Namieśnik J. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry // Molecules. 2015. Vol. 20. P. 10928-10946; doi:10.3390/molecules200610928 Metrics for green analytical chemistry. Marek Tobiszewsk.
[53] Li Y., Fabiano-Tixier A.S., Vian M.A., Chemat F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry // TrAC Trends Anal. Chem. 2013. Vol. 47. P. 1-11.
[54] Destandau E., Michel T., Elfakir C. Microwave-assisted extraction, in: M.A. Rostagno, J.M. Prado (Eds.), RSC Green Chem, Royal Society of Chemistry, Cambridge, 2013. P. 113-156. [55] Chemat F., Fabiano-Tixier A.S., Vian M.A., Allaf T., Vorobiev E. Solvent-free extraction of food and natural products // TrAC Trends Anal. Chem. 2015. Vol. 71. P. 57-168.
[56] Nkhili E., Tomao V., El Hajji H., El Boustani E.-S., Chemat F., Dangles O. Microwave assisted water extraction of green tea polyphenols // Phytochem. Anal. 2008. Vol. 20. P. 408-415.
[57] Perino S., Petitcolas E., de la Guardia M., Chemat F. Portable microwave assisted extraction: an original concept for green analytical chemistry // J. Chromatogr. A. 2013. Vol. 1315. P. 200-203.
[58] Zheng X., Wang X., Lan Y., Shi J., Xue S.J., Liu C. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds // Sep. Purif. Technol. 2009. Vol. 70, Issue 1. P. 34-40.
[59] Bouras M., Chadni M., Barba F.J., Grimi N., Bals O., Vorobiev E. Optimization of microwave-assisted extraction of polyphenols from Quercus bark // Industrial Crops and Products. 2015. Vol. 77. P. 590-601.
[60] Hayat K., Hussain S., Abbas S., Farooq U., Ding B., Xia S., Jia C., Zhang X., Xia W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro // Separation and Purification Technology. 2009. Vol. 70, Issue 1. P. 63-70.
[61] Ballard T.S., Mallikarjunan P., Zhou K., O'Keefe S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins // Food Chemistry. 2010. Vol. 120. P. 11851192.
[62] Kong Y., Zu Y.G., Fu Y.J., Liu W., Chang F.R., Li J., Chen Y.H., Zhang S., Gu C.B. Optimization of microwave-assisted extraction of cajaninstilbene acid and pinostrobin from pigeonpea leaves followed by RP-HPLC-DAD determination // Journal of Food Composition and Analysis. 2010. Vol. 23, Issue 4. P. 382-384.
[63] Xie D.-T., Wang Y-Q., Kang Y., Hu Q.-F., Su N.-Y., Huang J.-M., Che C.-T., Guo J.-X. Microwave-assisted extraction of bioactive alkaloids from Stephania sinica // Separation and Purification Technology. 2014. Vol. 130. P. 173-181.
[64] Li H., Chen B., Zhang Z., Yao S. Focused microwaveassisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies) // Talanta. 2004. Vol. 63, Issue 3. P. 659-665.
[65] Lu Y., Yue X.F., Zhang Z.Q., Li X.X., Wang K. Analysis of Rodgersia aesculifolia Batal. Rhizomes by Microwave-Assisted Solvent Extraction and GC–MS // Chromatographia. 2007. Vol. 66, Issue 5-6. P. 443-446.
[66] Dahmoune F., Spigno G., Moussi K., Remini H., Cherbal A., Madan K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared withultrasound-assisted and conventional solvent extraction // Industrial Crops and Products. 2014. Vol. 61. P. 31-40.
[67] Krishnan R.Y., Chandran M.N., Vadivel V., Rajan K.S. Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula // Separation and Purification Technology. 2016. Vol. 170. P. 224-233.
[68] www.cem.com
[69] www.biotage.com
[70] www.mls-mikrowellen.de [71] www.milestone.comw
[72] www. sineomicrowave.com
[73] www.anton-paar.com

Downloads

Published

2021-05-03