COPPER NANOPARTICLES IN THE ELECTROCATALYTIC HYDROGENATION OF ACETOPHENONE

Authors

  • Ya. A. Visurkhanova Institute of Organic Synthesis and Chemistry of Coal, Karaganda
  • N. M. Ivanova Institute of Organic Synthesis and Coal Chemistry the Republic of Kazakhstan
  • E. A. Soboleva Institute of Organic Synthesis and Coal Chemistry the Republic of Kazakhstan
  • Z. M. Muldakhmetov Institute of Organic Synthesis and Coal Chemistry the Republic of Kazakhstan

Keywords:

copper nanoparticles, copper (II) chloride, polymer stabilizers, electrocatalytic hydrogenation, acetophenone

Abstract

Copper nanoparticles were obtained by chemical reduction sodium borohydride and hydrazine hydrate аt present and without the addition of water-soluble polymers (PVA, PVP and TWEEN 80) as stabilizers. Their structure and morphological features have been studied by X-ray phase analysis and electron microscopy. Obtained copper nanoparticles have been used to activate a cathode in the electrohydrogenation of acetophenone in an aqueous- alcohol-alkaline catholyte medium. A higher electrocatalytic activity of copper nanoparticles prepared using sodium borohydride was established, which is insignificantly higher than that of copper nanoparticles produced by the method of electric explosion of a wire and noticeably higher than that of electrochemical copper powder.

References

[1] Gawande M., Goswami A., Felpin F., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R. Cu and Cu-based nanoparticles: synthesis and applications in catalysis // Chem. Rev. 2016. Vol. 116. P. 3722-3811.
[2] Park J., Kwon T., Kim J., Jin H., Kim H.Y., Kim B., Joo S.H., Lee K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions // Chem. Society Rev. 2018. Vol. 47, N 22. P. 8173-8202.
[3] Khandelwal A., Joshi R. Synthesis of nanoparticles and their application in agriculture // Acta Sci. Agriculture. 2018. Vol. 2, N 3. P. 10-13.
[4] Gulchenko S.I., Gusev A.A., Zakharova O.V. Prospects for creation antibacterial preparations based on copper nanoparticles // Vestnik TSU. 2014. Vol. 19, N 5. P. 1397-1399.
[5] Halevas E.G., Pantazaki A.A. Copper nanoparticles as therapeutic anticancer agents // Nanomed. Nanotechnol. J. 2018. Vol. 2, N 1. P. 119-139.
[6] Evstifeev E.N., Novikovа A.A. Obtaining of copper nanoparticles by thermal decomposition of the formate complex of copper with triethylamine // Mezhdunarodnyi zhurnal prikladnyh i fundamental'nyh issledovanii. 2017. N 9. P. 135-139.
[7] Park B.K., Jeong S., Kim D., Moon J., Lim S., Kim J.S. Synthesis and size control of monodisperse copper nanoparticles by polyol method // J. Coll. Interface Sci. 2007. Vol. 311, N 2. P. 417-424.
[8] Soldatenko E.M., Doronin S.Yu., Chernova R.K. Chemical methods for producing copper nanoparticles // Butlerovskie soobshcheniya. 2014. Vol. 31, N 1. P. 103-113.
[9] Liu Z., Bando Y. A novel method for preparing copper nanorods and nanowires // J. Adv. Mater. 2003. Vol. 15, N 4. P. 303-305.
[10] Yavorovsky N.A. Obtaining ultrafine powders by the electric explosion method // Izv. vuzov. Fizika. 1996. N 4. P. 114-136.
[11] Dash P.K., Balto Y. Generation of nano-copper particles through wire explosion method and its characterization // Res. J. Nanosci. Nanotech. 2011. N 1. P. 25-33.
[12] Pomogaylo A.D., Rosenberg A.S., Uflyand I.E. Metal nanoparticles in polymers. М.: Khimiya, 2000. 672 p.
[13] Hashemipour H., Zadeh M.E., Pourakbari R., Rahimi P. Investigation on synthesis and size control of copper nanoparticle via electrochemical and chemical reduction method // Int. J. Phys. Sci. 2011. Vol. 6, N 18. P. 4331-4336.
[14] Auchynnikova E.A., Vorobeva S.A. Synthesis and properties of the copper nanoparticles obtained by two-stage reduction // Vestnik BGU. Ser. 2. 2015. N 1. P. 32-37.
[15] Auchynnikova E.A., Vorobeva S.A. Synthesis and properties of copper nanoparticles stabilized by polyethylene glycol // Vestnik BGU. Ser. 2. 2013. N 3. P. 12-16.
[16] May Y-W., Yu Zh-Zh. Polymer nanocomposites. M.: Technosphere, 2011. 688 p.
[17] Whittell G.R., Manners I. Metallopolymers: new multifunctional materials // Adv. Mater. 2007. Vol. 19, N 21. P. 3439-3468.
[18] Guzmana A., Arroyoa J., Verdea L., Rengifoa J. Synthesis and characterization of copper nanoparticles/polyvinyl chloride (Cu NPs/PVC) Nanocomposites // Procedia Materials Science. 2015. N 9. P. 298-304.
[19] Benavente E., Lozano-Zarto H., Gonzáles G. Fabrication of copper nanoparticles: advances in synthesis, morphology control, and chemical stability // Recent Patents on Nanotechnology. 2012. Vol. 7, N 9. P. 108-132.
[20] Baeshov A.B., Zhurinov M.Zh. About the formation of ultrafine powders of metals in aqueous solutions during cathodic polarization and during polarization with alternating current // Chemical Bulletin of Al-Farabi KazNU. 2008. N 2. P. 12-14.

Downloads

Published

2021-05-03