SEMI-PERMEABLE MEMBRANES FOR ULTRA-, MICROFILTRATION AND REVERSE OSMOSIS

Authors

  • E. E. Ergozhin A.B. Bekturov Institute of chemical sciences
  • T. K. Chalov A.B. Bekturov Institute of chemical sciences
  • B. E. Begenova Kozybayev University
  • K .Kh. Khakimbolatova A.B. Bekturov Institute of chemical sciences

Keywords:

Membrane, filtration, baromembrane process, reverse osmosis, pores

Abstract

The results of theoretical and experimental studies in the field of synthesis and application of semipermeable synthetic membranes as the main component of modern non-waste environmentally friendly technologies are summarized. The methods for their preparation for baromembrane processes − reverse osmosis, ultra- and microfiltration, are considered. The features of the kinetics and formation mechanism of semipermeable polymer membranes of various types synthesized by polymerization or polycondensation of various monomers and chemical modification of the finished membranes are discussed. The results of studies to increase their selective permeability, physico-mechanical and electrochemical properties are presented. The promising areas of their practical application for solving urgent problems of water treatment, industrial effluent treatment with the extraction of valuable components, separation of gas and liquid mixtures at high pressures and intensive mass transfer modes are identified.

References

[1] Gafurov N.M., Kuvshinov N.E. General information about the membrane technology of water purification // International scientific journal "Innovation Science". 2016. N 4. P. 65-66.
[2] Orlov N.S. Industrial application of membrane processes. M.: RCTU D.I. Mendeleev, 2007. 320 p.
[3] Ryabchikov B.E. Modern methods of preparing water for industrial and domestic use. M.: “DeLi Print”, 2004. 328 p.
[4] Mosin O.V. Baromembrane processes and apparatus for water treatment // Plumbing, heating, air conditioning. 2013. N 2(134). P. 34-42.
[5] Zazhigaeva K.V., Tkachenko D.O. The principle of reverse osmosis // New science: problems and prospects. 2016. N 7-1(91). P. 11-13.
[6] Zakharov S.L., Efremov A.V. Investigation of the selective porosity of membranes with a rigid structure // Chemistry and Chemical Technology. 2011. Vol. 54, Issue 9. P. 112-113.
[7] Omarova K.I., Musabekov K.B., Adilbekova A.O. Modification of Macroporous Membranes by Associations of Synthetic Polyelectrolytes and Surfactants // Bulletin of the NAS of the Republic of Kazakhstan. Ser. Chem. and technol. 2016. N. 2. P. 57-62.
[8] Ming-Ming Li, Shan-Jing Yao. Preparation of polyelectrolyte complex membranes based on sodium cellulose sulfate and poly(dimethyldiallylammonium chloride) and its permeability properties // J. Appl. Polym. Sci. 2009. Vol. 112, N 1. P. 402-409.
[9] Peinetti A.S., De Leo L.P., Gonzalez G.A., Battaglini F. A polyelectrolyte-surfactant complex as support layer for membrane functionalization // J. Colloid InterfaceSci. 2012. Vol. 386, N 1. P. 44-50.
[10] Dubyaga V.P., Nameless I.B. Nanotechnology and membranes // Crete. technologies. Membranes 2005. N. 3. P. 11-16.
[11] Kolzunova L.G. Baromembrane separation processes: tasks and problems // Vestnik FEB RAS. 2006. N 5. P. 65-76.
[12] Kolzunova L.G., Greben V.P., Karpenko M.A., Rodzik I.G. Membrane separation methods and new membranes for these processes // Vestnik FEB RAS. 2009. N 2. P. 13-17.
[13] Amara M., Kerdjoudj H. A modifiedanion-exchange membrane applied to purification of effluent containing differentanions. Pre-treatment before desalination // Desalination. 2007. Vol. 206, N 1/3. P. 205-209.
[14] Tregubova A.A., Derbisher E.V., Vedenina N.V. Ovdienko E.N., Derbisher V.E. Modern environmental problems of textile technology // Modern high technology. 2007. N 10. P. 92-93.
[15] Abdullin I.Sh., Nefedyev E.S., Ibragimov R.G., Paroshin V.V., Zaitseva O.V. Wastewater treatment of textile enterprises based on modified composite membranes // Bulletin of Kazan. technol. univ. Applied Chemistry and Chemical Technology. 2013. N 3. P. 22-27.
[16] Dolotov A.S., Grigoryev K.A., Kovalev V.N., Kaplan S.F. Features of the purification of industrial waters containing cyanide ion by the reverse osmosis method // Izvestiya SPbGTI. 2015. N 32(58). P. 95-98.
[17] Yagafarova G.G., Aminova A.F., Sukhareva I.A., Khangildina A.R., Khangildin R.I. Development of a method for treating wastewater from difficultly oxidized organic compounds // Water: chemistry and ecology. 2016. N 1. P. 24-29.
[18] Mamontov V.V., Redin D.Yu., Lazarev K.S., Golovashin V.L. The study of the retention coefficient and specific productivity in the process of reverse osmosis treatment of industrial water // Chemistry and Chem. technol. 2007. Vol. 50, N 9. P. 18-20.
[19] Lazarev K.S., Kovalev S.V., Arzamastsev A.A. Studies of the kinetic coefficients of reverse osmosis separation of solutions on membranes MGA-95, MGA-100 and OPM-K // Vestnik TSTU. 2011. Vol. 17, N 3. P. 726-734.
[20] Kocharov R.G. Theoretical Foundations of reverse osmosis (study guide). M.: RCTU D.I. Mendeleev, 2007. 132 p.
[21] Reverse Osmosis and Nanofiltration (M46), Second Edition, Softbound: American Water Works Association. 2007. 226 p.
[22] Kocharov R.G., Kagramanov G.G. Calculation of membrane separation of liquid mixtures. M.: RCTU D.I. Mendeleev, 2007. 188 p.
[23] Pabby A.K., Rizvi S.S.H., Sastre A.M. Handbook of membrane separations. Francis: Taylor, 2009. 1184 р.
[24] Noble R.D., S. Stern A., Membrane separations technology, Principles and Applications. Amsterdam: Elsevier Science, 2003. 716 p.
[25] http://www.mediana-filter.ru/ion_nanofiltration.html
[26] Groshilin S.M., Ermolenko T.V., Kolesaev A.V., Ivanov A.O., Belyaev V.F., Voro- nov V.V., Sklyarov V.N. Prospects for the use of reverse osmosis systems for water supply of the ships of the Navy // Military Medical Journal. 2009. N 5. P. 80-81.
[27] Braznovsky V.K. Obtaining environmentally friendly drinking water on marine vessels using nanotechnology // Bulletin of the Baltic Federal University. I. Kant. 2013. N 1. P. 21-25.
[28] Mosin O.V. Desalination plants // Plumbing, heating, air conditioning. 2012. N 1(121). P. 20-24.
[29] Svitsov A.A. Introduction to membrane technology. M.: “DeLi print”, 2006. 170 p.
[30] Tanganov B.B., Baldanova D.M., Baldanov M.M. Characteristics of hydrated nanoparticles (hydration numbers, masses and sizes) // Mater. XV Int. scientific and practical. conf. “Natural and Intellectual Resources of Siberia” (Sibresurs-15-2009). Irkutsk, 2009. P. 95-98.
[31] Tanganov B.B. Sea water and the problem of its desalination // Modern high technology. 2010. N 7. P. 90-92.
[32] Kamaldinova O.S., Bugranova I.E., Bikazakova G.M. Desalination of water by reverse osmosis // Scientific. West technol. Inst. – branch of FSBEI HPE “Ulyanovsk State Agricultural Academy named after P.A. Stolypin". 2013. N 12. P. 179-183.
[33] Sobolev V.D., Oparin E.A., Sabbatovsky K.G. Study of the diffusion of alkali metal and ammonium chlorides through a nanofiltration membrane with a selective layer // Coll. Journal. 2010. Vol. 72, N 5. P. 676-682.
[34] Timonin A.S. Environmental Engineering Handbook. T.2. Kaluga: Publishing house of scientific literature N.F. Bochkareva, 2003. 884 p.
[35] Rodionov A.I., Klushin V.N., Sister V.G. Technological processes of environmental safety. 3rd ed., revised. and add. Kaluga: Publishing house of scientific. lit. N.F. Bochkareva, 2000. 800 p.
[36] Somin V.A., Komarova L.F. Studies of the selective properties of membranes for water purification from heavy metal ions // Bulletin of higher educational institutions. Series: Chem. andchem. technol. 2009. Vol. 52, N 2. P. 138-141.
[37] Pervov A.G., RudakovaG.Ya. Program for the technological calculation of reverse osmosis and nanofiltration systems using service reagents of the aminate series // Energy Saving and Water Treatment. 2008. N 1(51). P. 17-20.
[38] Malakhov I.A., Askernia A.A., Borovkova I.I., Malakhov G.I., Rogovoy V.A., LebedevV.Yu., Velichkina N.N. The technology of deep desalination of additional water at thermal power plants with waste water disposal // Thermal Engineering. 2006. N 8. P. 14-16.
[39] Yurchevsky E.B., Pervov A.G., Pichugina M.A. The use of reverse osmosis water desalination technology in the energy sector - 20 years // Energy conservation and water treatment. 2009. N 5(61). P. 2-8.
[40] Agamaliev M.M. The technology of combined desalination of sea water using secondary energy resources // Energy conservation and water treatment. 2007. N 4(48). P. 14-16.
[41] Desyatov A.V., Baranov A.E., Baranov E.A., Kakurkin N.P., Kazantseva N.N., Aseev A.V. Experience in using membrane technology for the purification and desalination of water. M.: ANO "Chemistry", 2008. 240 p.
[42] Desyatov A.V., Baranov A.E., Kazantseva N.N., Erokhin M.A., Muravyev I.V. Technology of deep desalination of water // Water: chemistry and ecology. 2009. N 5. P. 8-14.
[43] Gromov S.L. Critical parameters of reverse osmosis and countercurrent ion exchange // Energy conservation and water treatment. 2004. N 5. P. 13-14.
[44] Ergozhin E.E, Chalov T.K., Khakimbolatova K.Kh. Membranes and membrane technologies. Almaty, 2017. 260 p.
[45] Ergozhin E.E., Chalov T.K., Melnikov E.A. Status and prospects of the global oil refining industry. Almaty, 2019. 562 p.

Downloads

Published

2021-05-03