METHOD OF SYNTHESIS OF LITHIUM IRON PHOSPHATE: MICROWAVE SYNTHESIS IS A PROMISING METHOD FOR SYNTHESIS OF LiFePO4

Authors

  • A. K. Rakhimova Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • A. K. Galeleyva Non-commercial joint-stock company “Al-Farabi Kazakh National university”

Keywords:

lithium iron phosphate, microwave synthesis, cathodic material, lithium-ion accumulators

Abstract

The article deals with synthesis of lithium iron phosphate at present, the method of microwave synthesis is the fastest and cheapest approach.

References

[1] Goodenough J. // J. Power Sources. 2007. Vol. 174. P. 449.
[2] Song M., Kang Y., Kim J., Kim H., Kim D., Kwon H., Lee J. // J. Power Sources. 2007. Vol. 166. P. 260.
[3] Barker J., Saidi M.Y., Swoyer J.L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method // Electrochemical and Solid-State Letters. 2003. Vol. 6. P. 53-55.
[4] Ravet N., Gauthier M., Zaghib K., Goodenough, J.B., Mauger A., Gendron, F., Julien, C.M. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive // Chemistry of Materials. 2007. Vol. 19. P. 2595-2602.
[5] Mi C.H., Cao G.S., Zhao X.B. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode // Mater. Lett. 2005. Vol. 59. P. 127-130.
[6] Wang L.N., Zhan X.C., Zhang Z.G., Zhang K.L. A soft chemistry synthesis routine for LiFePO4–C using a novel carbon source // J. Alloys Compd. 2006. Vol. 456. P. 461-465.
[7] Chiang Y.-M., Gozdz A.S., Payne M.W., Nanoscale ion storage materials, United States Patent Application Publication US 2007/0190418 A1, International Publication Number WO 2008/109209 A2 -2008.
[8] Morgan D., Van der Ven A., Ceder G. Li Conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) Olivine Materials // Electrochem. Solid-State Lett. 2004. Vol. 7. P. 30-32.
[9] Franger S., Bourbon C.,Cras F. L. Optimized lithium iron phosphate for high-rate electrochemical applications // J. Electrochem. Soc. 2004. Vol. 151. P. 1024.
[10] Chen J., Wang S., Whittingham M.S. Hydrothermal synthesis of cathode materials // J. Power Sources. 2007. Vol. 174. P. 442-448.
[11] Jin B., Gu H.-B. Preparation and characterization of LiFePO4 cathode materials by hydrothermal method // Solid State Ionics. 2008. Vol. 178 P. 1907-1914.
[12] Chen J., Wang S., Whittingham M.S. Hydrothermal synthesis of cathode materials // J. Power Sources. 174 (2007) 442-448.
[13] Jin B., Gu H.B. Preparation and characterization of LiFePO4 cathode materialsby hydrothermal method // Solid State Ion. 178 (2008) 1907-1914.
[14] Meligrana G., Gerbaldi C., Tuel A., Bodoardo S., Penazzi N. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells // J. PowerSources. 160 (2006) 516-522.
[15] Bodoardo S., Gerbaldi, Meligrana G., Tuel A., Enzo S., Penazzi N. Optimization of some C. parameters for preparation of nano structured LiFePO4/C cathode // Ionics .15 (2009) 19-26.
[16] Ou X., Liang G., Wang L., Xu S., Zhao X. Effects of magnesium doping onelectronic conductivity and electrochemical proper ties of LiFePO4 preparedvia hydrothermal route // J. Power Sources. 184 (2008) 543-547.
[17] Jin E.M., Jin B., Jun D.K., Park K.H., Gu H.B., Kim K.W. A study on theelectrochemical characteristics of LiFePO4 cathode for lithium polymer batteriesby hydrothermal method // J. Power Sources. 178 (2008) 801-806.
[18] Chen J., Vacchio M.J., Wang S., Chernova N., Zavalij P.Y., Whittingham M.S. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications // Solid State Ion. 178 (2008)1676-1693.
[19] Sangeeta D., LaGraff J.R. Inorganic Materials Chemistry Desk Reference, seconded. CRC Press, Florida, USA, 2005.
[20] Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications, second ed., CRC Press, Florida, USA, 2006.
[21] Brinker C.J., Scherer G.W. Solgel Science: The Physics and Chemistry of Solgel Processing, Academic Press Inc., San Diego, CA, 1990.
[22] Hench L.L., West J.K. The SolGel process // Chem. Rev. 90 (1990) 3372.
[23] Rana K., Sil A., Ray S. Synthesis of ribbon type carbon nanostructure using LiFePO4 catalyst and their electrochemical performance // Mater. Res. Bull. 44 (2009) 2155-2159.
[24] Arumugam D., Kalaignan G.P., Manisankar P. Synthesis and electrochemical characterizations of nanocrystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries // J. Solid State Electrochem. 13 (2009) 301-307.
[25] Dominko R., Goupil J.M., Bele M., Gaberscek M., Remskar M., Hanzel D., et al.,Impact of LiFePO4/C composites porosity on their electro chemical performance // J. Electrochem. Soc.
152 (5) (2005) A858-A863.
[26] Yang J., Xu J.J. NonaqueousSolGel synthesis of high performance LiFePO4 // Electrochem. Solid-State Lett. 7 (2004) A515-A518.
[27] Lin Y., Gao M.X., Zhu D., Liu Y.F., Pan H.G. Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C // J. Power Sources 184 (2008) 444-448.
[28] Vadivel Murugan A., Muraliganth T., Manthiram A. Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries // Electrochem. Commun. 2008. Vol. 10. P. 903-906
[29] Yang M.-R., Teng T.-H.,. Wu Sh.-H LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis // J. Power Sources. 2006. Vol. 159. P. 307-311.
[30] Huang C., Ai D., Wang L., Hel X. Rapid synthesis of LiFePO4 by co-precipitation // Chem. Lett. 42 (10) (2013) 1191-1193.
[31] Chang Z.R., Lv H.J., Tang H.W., Li H.J., Yuan X.Z., Wang H. Synthesis and characterization of high density LiFePO4/C composites as cathode materials for lithium ion batteries // Electrochim. Acta. 54 (2009) 4595-4599.
[32] Konarova M., Taniguchi I. Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties // Mater. Res. Bull. 2008. Vol. 43. P. 3305-3317.
[33] Xu Zh., Xu L., Lai Q., Ji X. Comparison between different LiFePO4 synthesis routes // Mater. Chem. Phys. 2007. Vol. 105. P. 80-85.
[34] Striebel K., Shim J., Sierra A., Yang H., Song X., Kostecki R., McCarthy K. The development of low cost LiFePO4-based high power lithium-ion batteries // J. Power Sources. 2007. Vol. 146. P. 33-38.
[35] Jugovic D., Mitric M., Cvjeticanin N., Jancar B., Mentus S., Uskokovic´ D. Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method // Solid State Ion. 179 (2008) 415-419.
[36] Cho T.H., Chung H.T. Synthesis of olivine type LiFePO4 by emulsion drying method // J. Power Sources. 133 (2004) 272-276.
[37] Myung S.T., Komaba S., Hirosaki N., Yashiro H., Kumagai N. Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material // Electrochim. Acta. 49 (2004) 4213-4222.
[38] Myung S.T., Chung H.T. Preparation and characterization of LiMn2O4 powders by the emulsion drying method // J. Power Sources. 84 (1999) 32-38.
[39] Myung S.T., Kumagai N., Komaba S., Chung H.T. Preparation andelectrochemical characterization of LiCoO2 by the emulsion drying method // J. Appl. Electrochem. 30 (2000) 1081-1085.
[40] Gotoh K., Masuda H., Higashitani K. Powder Technology Handbook, seconded. Marcel Dekker Inc., New York, 1997.
[41] Park K.S., Son J.T., Chung H.T., Kim S.J., Kim C.H., Lee C.H., et al., Synthesis of LiFePO4 by coprecipitation and microwave heating // Electrochem. Commun. 5 (2003) 839-842. [42] Wang L., Huang Y., Jiang R., Jia D. Preparation and characterization of nanosized LiFePO4 by lowheatingsolidstate coordination method and microwave heating // Electrochim. Acta. 52 (2007) 6778-6783.
[43] Beninati S., Damen L., Mastragostino M. MW assisted synthesis of LiFePO4for high power applications // J. Power Sources. 180 (2008) 875-879.
[44] Murugan A.V., Muraliganth T., Manthiram A. Rapid microwave solvothermal synthesis of phosphoolivinenanorods and their coating with a mixedconducting polymer for lithium ion batteries // Electrochem. Commun. 10 (2008)903-906.
[45] Bykov Y.V., Rybakov K.I., Semenov V.E. High temperature microwaveprocessing of materials // J. Phys. D Appl. Phys. 34 (2001) R55-R75.
[46] Li W., Ying J., Wan C., Jiang C., Gao J., Tang C. Preparation and characterization of LiFePO4 from NH4FePO4・H2O under different microwave heating conditions // J. Solid State Electrochem. 11 (6) (2007) 799-803.
[47] Zhang Y., Feng H., Wu X., Wang L., Zhang A., Xia T., et al., Onestep microwave synthesis and characterization of carbon modified nanocrystalline LiFePO4 // Electrochim. Acta. 54(11) (2009) 3206-3210.
[48] Zhang W.J. Structure and performance of LiFePO4 cathode materials: a review // J. Power Sources 196 (2011) 2962-2970.
[49] Song M.S., Kang Y.M., Kim J.H., Kim H.S., Kim D.Y., Kwon H.S., et al., Simple and fast synthesis of LiFePO4 /C composite for lithium rechargeable batteries by ballmilling and microwave heating // J. Power Sources. 166 (1) (2007)260-265.
[50] Zou H., Zhang G., Shen P.K. Intermittent microwave heating synthesized highperformance spherical LiFePO4/C for Li-ion batteries // Mater. Res. Bull. 45 (2010) 149-152.
[51] Song M.S., Kang Y.M., Kim Y.I., Park K.S., Kwon H.S. Nature of insulating phase transition and degradation of structure and electrochemical reactivity in anolivine structured material, LiFePO4 // Inorg. Chem. 48 (17) (2009) 8271-8275.
[52] Guo X.F., Zhan H., Zhou Y.H. Rapid synthesis of LiFePO4/C composite bymicrowave method // Solid State Ion. 180 (2009) 386-391.
[53] Wold A., Dwight K. Solid State Chemistry: Synthesis, Structure, and Properties of Selected Oxides and Sulphides. Chapman & Hall Inc., New York, 1993.
[54] Zou H., Zhang G., Shen P.K. 2010. Mater Res Bull. 45 149.
[55] Amol Naik, Jian Zhou, Chao Gao1, Lin Wang (2014). Microwave Assisted Solid State Synthesis of LiFePO4/C Using Two Different Carbon Sources // Int. J. Electrochem. Sci. 9 (2014). P. 6124-6133.
[56] Wang L., Jia D., Huang Y. Microwave synthesis method of lithium iron phosphate anode material for lithium secondary batteries // Faming Zhuanli Shenqing. 2008; CN 101121508 A 20080213.
[57] Gong Z., Yang Y. 2011. Energy Environ. Sci. 4 3223.
[58] Murugan V.A., Muraliganth T., Manthiram A. 2008. Electrochem. Commun. 10 903.
[59] Dimesso L., Spanheimer C., Jacke S., Jaegermann W. 2011. Ionics. 17 429.
[60] Harrison K.L., Bridges C.A., Paranthaman M.P., Segre C.U., Katsoudas J., Maroni V.A., Idrobo J.C., Goodenough J.B., Manthiram A. 2013. Chem. Mater. 25 768.
[61] BBilecka I., Hintennach A., Djerdj I., Novak P., Niederberger M. Efficient microwaveassisted synthesis of LiFePO4 mesocrystals with high cycling stability // Journal of Materials Chemistry. 2009; 19:5125-5128.
[62] Lianhong Zhang, Hongyu Liangb Rapid Synthesis of LiFePO4 Nanoparticles by Microwave_Assisted Hydrothermal Method Russian Journal.
[63] Devaraju K.M., Honma I. 2012 Adv. Energy Mater. 2 284.
[64] Ji H., Yang G., Ni H., Roy S., Pinto J., Jiang X. 2011. Electrochim. Acta. 56 3093.
[65] Yong Zhang∗, Hui Feng, Xingbing Wu, Lizhen Wang, Aiqin Zhang, Tongchi Xia, Huichao Dong, Minghao Liu One-step microwave synthesis and characterization of carbonmodified nanocrystalline LiFePO4 Electrochimica Acta 54 (2009) 3206-3210.
[66] Bao S.J., Liang Y.Y., Li H.L. 2005. Mater. Lett. 59 3761.
[67] Zhang Y., Dua P., Wang L., Zhang A., Song Y., Li X., Lv Y. 2011. Synthetic Met. 161 548.
[68] Zhang Q., Jiang W., Zhou Z., Wang S., Guo X., Zhao S., Ma G. 2012. Solid State Ionics. 218 31.

Published

2021-05-03