SYNTHESIS AND X-RAY DIFFRACTION STUDY OF THE CHROMITE-MANGANITES
Keywords:
chromium complex, sol-gel process, crystal structures, nanostructures, doping, X-ray diffractionAbstract
In this work synthesized new chromite-manganite phases using sol-gel method and their composition was studied by X-ray method. Chromium oxide, manganese oxide, yttrium oxide, metal carbonates, citric acid and glycerin were used as starting materials. It is shown that the use of citric acid and glycerol as precipitant, giving a positive effect to monophase samples. Precipitate was subjected to homogenizing roast in the temperature range from 600 to 1100°C, reaching the level of sintering samples were controlled by the basis of X-ray diffraction profiles. All the X-ray reflection lines have been successfully indexed according to the orthorhombic perovskite structure with space group: Pbnm (62) and with the following parameters: Y(1-x)MgCr0,5Mn0,5O3,(x≈0,7) –а=5.557, b=7.515, с=5.252 Å, Z = 4; Y(1-x)BaCr0,5Mn0,5O3, (x≈0,7) –а=9.102, b=5.533, с=7.330 Å, Z = 4; Y(1-x)SrCr0,5Mn0,5O3, (x≈0,7) –а=7.109, b=7.436, с=6.756 Å, Z = 4.
References
[1] Lewis N.S., Nocera D.G. Electromicrobiology: An Emerging Reality – A Review // Proc. Natl. Acad. Sci. USA. 2006. N 103. P. 15729.
[2] Turner J.A. A Realizable Renewable Energy Future // Science. 1999. N 285. P. 687-689.
[3] Kreuter W., Hofmann H. Electrolysis: the important energy transformer in a world of sustainable energy // Int. J. Hydrogen Energy. 1998. N 23. Р. 661-666.
[4] Singhal S.C., Kendall K. High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications // High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier Science, Oxford, UK, 2003. ISSN 1813-1107 3 2019
[5] Chroneos A., Yildiz B., Tarancon A., Parfitt D., Kilner J.A. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors // Energy Environ. Sci. 2011. N 4. Р. 3966-3970.
[6] Bockris J.O’M., Otagawa T. The Electrocatalysis of Oxygen Evolution on Perovskites // Elecrochem. Soc. 1984. N 131. Р. 290-302.
[7] Man I.C., Su H.-Y., Calle-Vallejo F., Hansen H.A., Martнnez J.I., Inoglu N.G., Kitchin J., Jaramillo T.F., Nшrskov J.K., Rossmeisl J. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces // ChemCatChem. 2011. N 3. Р. 1159-1165.
[8] Skinner S.J. Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes // Int. J. Inorg. Mater. 2001. N 3. Р. 113-121.
[9] Haile S.M. Fuel cell materials and components // Acta Mater. 2003. N 51. Р. 5981-6000.
[10] Jacobson A.J. Materials for Solid Oxide Fuel Cells // Chem. Mater. 2010. N 22. Р. 660-674.
[11] Suntivich J., Gasteiger H.A., Yabuuchi N., Nakanishi H., Goodenough J.B., Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries // Nat. Chem. 2011. N 3. Р. 546-550.
[12] Hong W.T., Risch M., Stoerzinger K.A., Grimaud A., Suntivich J., Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis // Energy Environ. Sci. 2015. N 8. Р. 1404-1427.
[13] Shabanova N.A., Sarkisov P.D. Osnovy zol-gel tehnologıı nanodispersnogo kremnezema. M.: IKTs «Akademknıga», 2004. 208 p.
[14] Kasenov B.K., Kasenova Sh.B., Sagıntaeva J.I. Dvoinye i troinye manganity, ferrity i khromity elochnyh, elochnozemelnyh ı redkozemelnyh metallov // M., 2017.
[15] Mataev M.M., Saxena S.M., Patrin G.S., Tursinova Zh.Y., Kezdikbayeva A.T., Nurbekova M.A., Baitasheva G.U. Manganite synthesis by different methods // Oriental jornal of chemistry. 2018. N 34(3). P. 1312-1316.
[16] Mataev M.M., Patrin G.S., Tursinova Zh.Y., Abdraimova M.R.,Yurkin G.Yu. Synthesis and Magnetic Properties of crystals Bi2BaFe4O10 // Journal of Siberian Federal University. Mathematics & Physics. 2018. N 11(4). Р. 411-415.