SYNTHESIS OF CuS/S NANOCOMPOSITES BY HYDROTHERMAL WAY AND THEIR CHARACTERIZATION

Authors

  • Zh. S. Shalabayev Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • A. K. Oskenbay Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • P. E. Orazbay Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • A. Sh. Duisenkulova Non-commercial joint-stock company “Al-Farabi Kazakh National university”

Keywords:

copper sulfide, sulfur, nanocomposite, hydrothermal route, shape control

Abstract

Copper sulfide/sulfur nanocomposites have been successfully synthesi- zed by hydrothermal route reacting Cu(CH3COO)2, CuCl2and (NH2)2CS in aqua media at 80 °C. The synthesized sample was studied by X-ray diffraction (XRD), Raman spectroscopy, TG-DS, and scanning electron microscopy (SEM) analysis. According to the results of XRD analysis, the diffraction peaks of the CuS/S nanocomposites closely matched the standard copper sulfide and sulfur peaks. The average crystallite size of copper sulfide and sulfur particles was about 3.5 and 3.6 nm, respectively. Results of TG-DSC analysis showed that composite material contains about 16.16 % of sulfur and 12.29 % of copper sulfide (covellite). SEM images presented that composite material consists of two different microstructures: elongated needle-like and non-structured agglomerates.

References

[1] Baláž P., Baláž M., Achimovičová M., Bujňáková Z., Dutková E. Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review) // J. Mater. Sci. 52 (2017) 11851-11890.
[2] Ryan K.M., Cabot A., Coughlan C., Ibáñez M., Dobrozhan O., Singh A. Compound copper chalcogenide nanocrystals // Chem. Rev. 117(9) (2017) 5865-6109.
[3] Yu J., Zhang J., Liu S. Ion-Exchange Synthesis and Enhanced Visible-Light Photoactivity of CuS/ZnS Nanocomposite Hollow Spheres // J. Phys. Chem. C 114(32) (2010) 13642-13649.
[4] Baláž P., Baláž M., Dutková E., Zorkovská A., Kováč J., Hronec P., J. Kováč Jr., Čaplovičová M., Mojžiš J., Mojžišová G., Eliyas A., Kostova N.G. CdS/ZnS nanocomposites: from mechanochemical synthesis to cytotoxicity issues // Mater. Sci. Eng., C 58 (2016) 1016-1023.
[5] Lu C., Liu C., Chen R., Fang X., Xu K., Meng D. Synthesis and characterization of ZnO/ZnS/CuS ternary nanocomposites as high efficient photocatalyst in visible light // Journal of materials science-materials in electronics 27(7) (2016) 6947-6954.
[6] Nogueira A.F., Benedetti J.E., Bernardo D.R., Morais A., Bettini J. Synthesis and characterization of a quaternary nanocomposite based on TiO2/CdS/rGO/Pt and its application in the photoreduction of CO2 to methane under visible light // RSC Adv. 5(43) (2015) 33914-33922
[7] Habibi-Yangjeh A., Akhundia A. Facile preparation of novel quaternary g-C3N4/Fe3O4/AgI/Bi2S3 nanocomposites: magnetically separable visible-light-driven photocatalysts with significantly enhanced activity // RSC Adv. 6(108) (2016) 106572-106583.
[8] Habibi-Yangjeh A., Shekofteh-Gohari M. Fe3O4/ZnO/Ag3VO4/AgI nanocomposites: Quaternary magnetic photocatalysts with excellent activity in degradation of water pollutants under visible light // Sep. Purif. Technol. 166 (2016) 63-72.
[9] Dong S., Wang P., Zhai Y., Wang D. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties // Nanoscale 3(4) (2011) 1640-1645.
[10] Pan S., Liu X. ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties // J. Solid State Chem. 191 (2012) 51-56.
[11] Saranya M., Ramachandrana R., Kollub P., Jeong S.K., Grace A.N. A template-free facile approach for the synthesis of CuS–rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents // RSC Adv. 5(21) (2015) 15831-15840.
[12] Goel S., Chen F., Cai W.B. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics // Small 10(4) (2014) 631-645.
[13] Suh M.P., Cho K., Han S.-H. Copper–organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction // Angewandte Chemie - International Edition 55(49) (2016) 15301-15305.
[14] Grozdanov I., Najdoski M. Optical and electrical properties of copper sulfide films of variable composition // J. Solid State Chem. 114(2) (1995) 469-475.
[15] Nair P.K., Nair M.T.S., Pathirana H.M.K.K., Zingaro R.A., Meyers E.A. Structure and composition of chemically deposited thin films of bismuth sulfide and copper sulfide - effect on optical and electrical properties // J. Electrochem. Soc. 140(3) (1993) 754-759.
[16] Wang H.-Y., Hua X.-W., Wu F.-G., Li B., Liu P., Gu N., Wang Z., Chen Z. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications // ACS Appl. Mater. Interfaces 7(13) (2015) 7082-7092.
[17] Yan H., Yaping W., Wenhong G., Yijing W., Lifang J., Huatang Y., Shuangxi L. Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries // Powder Technol. 212(1) (2011) 64-68.
[18] Cheng F.M., Qi Z.Y., Xiao F.Q., Gen T.Z., Mao L.L., Sheng Q.F. Controlled synthesis of various hierarchical nanostructures of copper sulfide by a facile microwave irradiation method // Colloids and Surfaces A-physicochemical and Engineering Aspects 371(1-3) (2010) 14-21.
[19] Guangzhao M., Wenfei D., Dirk G.K., Helmuth M. Synthesis of copper sulfide nanorod arrays on molecular templates // Nano Lett. 4(2) (2004) 249-252.
[20] Guozhen S., Di C., Kaibin T., Xianming L., Liying H., Yitai Q. General synthesis of metal sulfides nanocrystallines via a simple polyol route // J. Solid State Chem. 173(1) (2003) 232-235.
[21] Reijnen L., Meester B., Lange F.D., Schoonman J., Goossens A. Comparison of CuxS films grown by atomic layer deposition and chemical vapor deposition // Chem. Mater. 17(10) (2005) 2724-2728.
[22] Baláž M., Zorkovská A., Urakaev F., Baláž P., Briančin J., Bujňáková Z., Achimovičo- vá M., Gock E. Ultrafast mechanochemical synthesis of copper sulfides // RSC Adv. 6(91) (2016) 87836-87842.
[23] Saranya M., Santhosh C., Augustine S.P., Grace A.N. Synthesis and characterisation of CuS nanomaterials using hydrothermal route // J. Exp. Nanosci. 9(4) (2014) 329-336.
[24] Lu Q., Gao F., Zhao D. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process // Nano Lett. 2(7) (2002) 725-728.
[25] Wang G., Li K., Wanga B., Sua D., Park J., Ahnb H. Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique // J. Power Sources 202 (2012) 389-393.
[26] Wild M., Offer G.J., O’Neill L., Zhang T., Purkayastha R., Minton G., Marinescub M. Lithium sulfur batteries, a mechanistic review // Energy & Environmental Science 8(12) (2015) 3477-3494.
[27] Zhang S.S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions // J. Power Sources 231 (2013) 153-162.
[28] S.e. al. Sulfur Nanoparticles: Synthesis, Characterizations and their Applications // J. Mater. Environ. Sci. 4(6) (2013) 6.
[29] Ellis M.A., Ferree D.C., Funt R.C., Madden L.V. Effects of an apple scab-resistant cultivar on use patterns of inorganic and organic fungicides and economics of disease control // Plant Dis. 82(4) (1998) 428-433.
[30] Basu S., Choudhury S.R., Roy S., Goswami A. Polyethylene glycol-stabilized sulphur nanoparticles: an effective antimicrobial agent against multidrug-resistant bacteria // J. Antimicrob. Chemother. 67(5) (2012) 1134–1137.
[31] An Y.-l., Nie F., Wang Z.-y., Zhang D.-s. Preparation and characterization of realgar nanoparticles and their inhibitory effect on rat glioma cells // Int. J. Nanomed. 6 (2011) 3187-3194.
[32] Porras I. Sulfur-33 nanoparticles: A Monte Carlo study of their potential as neutron capturers for enhancing boron neutron capture therapy of cancer // Appl. Radiat. Isot. 69(12) (2011) 1838-1841.
[33] Shamsipur M., Pourmortazavi S.M., Roushani M., Kohsari I., Hajimirsadeghi S.S. Novel approach for electrochemical preparation of sulfur nanoparticles // Microchim. Acta 173(3-4) (2011) 445-451.
[34] Deshpande A.S., Khomane R.B., Vaidya B.K., Joshi R.M., Harle A.S., Kulkarni B.D. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion // Nanoscale Research Letters 3(6) (2008) 221-229.
[35] Kouzegaran V.J., Farhadi K. Green synthesis of Sulphur Nanoparticles assisted by a herbal surfactant in aqueous solutions // Micro & Nano Lett. 12(5) (2017) 329-334.
[36] Paria S., Chaudhuri R.G. Synthesis of sulfur nanoparticles in aqueous surfactant solutions // J. Colloid Interface Sci. 343 (2010) 439–446.
[37] Xie X.-Y., Zheng W.-J., Bai Y., Liua J. Cystine modified nano-sulfur and its spectral properties // Mater. Lett. 63(16) (2009) 1374-1376.
[38] LaMer V.K., Kenyon A.S. Kinetics of the formation of monodispersed sulfur sols from thiosulfate and acid // J. Colloid Sci. 2(2) (1947) 257-264.
[39] He D., Xue P., Song D., Qu J., z. Chao Laia. Tri-Functional Copper Sulfide as Sulfur Carrier for High-Performance Lithium-Sulfur Batteries // J. Electrochem. Soc. 164(7) (2017) A1499-A1502.
[40] Karikalan N., Karthik R., Chen S.-M., Karuppiah C., Elangovan A. Sonochemical Synthesis of Sulfur Doped Reduced Graphene Oxide Supported CuS Nanoparticles for the Non-Enzymatic Glucose Sensor Applications // Sci. Rep. 7 (2017).
[41] Kalita M.P.C., Kalita A. Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals // Physica E 92 (2017) 36-40.
[42] Ishii M., Shibata K., Nozaki H. Anion Distributions and Phase Transitions in CuS1-xSex (x=0-1) Studied by Raman Spectroscopy // J. Solid State Chem. 105 (1993) 504-511.
[43] Munce C.G., Parker G.K., Holt S.A., Hope G.A. A Raman spectroelectrochemical investigation of chemical bath deposited CuxS thin films and their modification // Colloids Surf. Physicochem. Eng. Aspects 295(1-3) (2007) 152-158.
[44] Safrani T., Joppb J., Golan Y. A comparative study of the structure and optical properties of copper sulfide thin films chemically deposited on various substrates // RSC Adv. 3(45) (2013) 23066-23074.
[45] Jaroudi O.E., Picquenard E., Gobeltz N., Demortier A., Corset J. Raman spectroscopy study of the reaction between sodium sulfide or disulfide and sulfur: identity of the species formed in solid and liquid phases // Inorg. Chem. 38(12) (1999) 2917-2923.
[46] Wang J., Chenb J., Konstantinov K., Zhaoa L., Nga S.H., Wang G.X., Guoa Z.P., Liu H.K. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries // Electrochim. Acta 51(22) (2006) 4634-4638.
[47] Zuo J., Xu C., Liu Y., Qian Y. Crystallite size effects on the Raman spectra of Mn3O4 // Nanostructurred Materials 10(8) (1998) 1331-1335.
[48] Černošek Z., Holubová J., Černošková E., Růžička A. Sulfur – a new information on this seemingly well-known element // Journal of Non-oxide Glasses 1(1) (2009) 38-42.
[49] Saha B., Saikia J., Das G. Correlating enzyme density, conformation and activity on nanoparticle surfaces in highly functional bio-nanocomposites // The Analyst 140(2) (2015) 532-542.

Downloads

Published

2021-05-03