PREPARATION OF THREE-COMPONENT HYDROGELS BASED ON GELLAN AND ACRYLATES

Authors

  • D. Shamet Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • L. E. Agibayeva Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • R. A. Мangаzbayeva Non-commercial joint-stock company “Al-Farabi Kazakh National university”
  • G. A. Mun Non-commercial joint-stock company “Al-Farabi Kazakh National university”

Keywords:

gellan, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydrogel, thermo-sensitive properties

Abstract

This article is devoted to obtaining three-component hydrogel systems based on gellan, 2-hydroxyethyl acrylate (HEA) and 2-hydroxyethyl methacrylate (HEMA), the study of their swelling and heat-sensitive properties. Synthesis is based on material initiation in the presence of a bisacrylamide cross-linking agent. It is shown that the production of a hydrogel is based on the formation of a semi-interpenetrating network. It was established that the addition of gellan to acrylate monomers leads to an increase in the swelling properties of the hydrogels HEA-HEMA-Gellan, and also leads to a shift of the collapse temperature to a wider range from 38 to 59°C.

References

[1] Galaev I.Y., Mattiasson B. 'Smart' polymers and what they could do in biotechnology and medicine // Trends Biotechnol. 1999. Vol. 17. P. 335-340.
[2] Ding Y., Chen G., Hoffman A.S. Properties of polyNIPAAm-trypsin conjugates // J. Biomed. Mater. Res. 1998. Vol. 39. P. 498-505.
[3] Stayton P.S., Shimoboji T., Long C., et al. Control of protein-ligand recognition using a stimuli-responsive polymer // Nature. 1995. Vol. 378. P. 472-474.
[4] Qiu Y., Park K. Environment-sensitive hydrogels for drug delivery // Adv. Drug Deliver Rev. 2001. Vol. 53. P. 321-339.
[5] da Silva R.M.P., Pedro A.J., Oliveira J.T., et al. Poly(N-isopropylacrylamide) surface grafted chitosan membranes as new substrate for cell sheet manipulation // Proceedings on 19th European Conference on Biomaterials. Sorrento, Italy, 2005.
[6] Lupitskyy R., Roiter Y., Minko S., Tsitsilianis C. From smart polymer molecules to responsive nanostructured surfaces // Langmuir. 2005. Vol. 21. P. 8591-8593.
[7] Uhlmann P., Houbenov N., Stamm M., Minko S. Surface functionalization by smart binary polymerbrushes to tune physico-chemical characteristics at biointerfaces // E-Polymers. 2005. Vol. 75. P. 1-10.
[8] Yamato M., Konno C., Utsumi M., Kikuchi A., Okano T. Thermally responsive polymergraftedsurfaces facilitate patterned cell seeding and co-culture // Biomaterials. 2002. Vol. 23. P. 561-567.
[9] Geismann C., Ulbricht M. Photoreactive functionalization of poly(ethylene terephthalate) tracketched pore surfaces with "smart" polymer systems // Macromol. Chem. Phys. 2005. Vol. 206. P. 268-281.
[10] Hester J.F., Olugebefola S.C., Mayes A.M. Preparation of pH-responsive polymer membranes by self-organization. // J Membrane Sci. 2002. Vol. 208. P. 375-388.
[11] Li S.K., D´Emanuele A. On-off transport through a thermoresponsive hydrogel composite membrane // J. Control Release. 2001. Vol. 75. P. 55-67.
[12] Schild H.G. Poly(N-isopropylacrylamide): experiment, theory and application // Prog. Polym. Sci. 1992. Vol. 17. P. 163-249.
[13] BaeY.H., Okano T., Kim S.W. A New Thermo-Sensitive Hydrogel: Poly(N-isopropyl acrylamide) Interpenetrating Polymer Networks I. Synthesis and Characterization // Pharm. Res. 1990. Vol. 8. P. 624-628.
[14] Kaneko Y., Sakai K., Kikuchi A., Sakurai Y. and Okano T. Fast swelling/deswelling kinetics of comb-type grafted poly(N-isopropylacrylamide) hydrogel // Macromol. Chem. Macromol. Symp. 1996. N 109. P. 41.
[15] Yoshida R., Uchida K., Kaneko Y., Sakai K., Kikuchi A., Sakurai Y., Okano T. Combtype grafted hydrogels with rapid de-swelling response to temperature changes // Nature. 1995. Vol. 374. P. 240-242.
[16] Nakamura K., Maitani Y., Lowman A.M., Takayama K., Peppas N.A., Nagai T. Uptake and release of budesonide from mucoadhesive, pH-sensitive copolymers and their application to nasal delivery // J. Controlled Release. 1999. Vol. 61. P. 329-335.
[17] Yoshida R., Uchida K., Kaneko Y., Sakai K., Kikuchi A., Sakurai Y., Okano T. Combtype grafted hydrogels with rapid de-swelling response to temperature changes // Nature. 1995. Vol. 374. P. 240-242.
[18] Kikuchi A., Okano T. Pulsatile drug release control using hydrogels // Adv. Drug Delivery Rev. 2002. Vol. 54. P. 53-77.
[19] Kaneko Y., Yoshida R., Sakai K., Sakurai Y., Okano T. Temperature-responsive shrinking kinetics of poly (N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobic comonomers // J. Membr. Sci. 1995. Vol. 101. P. 13-22.
[20] Ramkissoon-Ganorkar C., Liu F., Baudys M., Kim S.W. Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight // J. Controlled Release. 1999. Vol. 59. P. 287-298.
[21] Shiino D., Murata Y., Kubo A., Kim Y.J., Kataoka K., Koyama Y., Kikuchi A., Yokoyama M., Sakurai Y., Okano T. Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH // J. Controlled Release. 1995. Vol. 37. P. 269-276.
[22] Bae Y.H., Okano T., Kim S.W. A new approach for thermosensitive hydrogels: Interpenetrating polymer networks of N-acryloylpyrrolidine and poly(oxyethylene) // J. Controlled Release. 1989. Vol. 9. P. 271-279.
[23] Sarsengaliev R.R., Mun G.A., Tazetdinov D.I., Pak. K. Synthesis and physicochemical properties of new temperature-sensitive polymers based on hydroxyethyl acrylate and hydroxyethyl methacrylate // Vestnik KazNU. Ser. chemical. 2003. N 2(30). P. 129-133.

Published

2021-05-03