MICROWAVE RADIATION, ITS INFLUENCE FOR SOLUTIONS AND USE FOR EXTRACTIONS OF COMPONENTS OF PLANT MATERIALS
2-nd Report. The interaction of microwave radiation with plant material and factors affecting the process of extraction of natural compounds
Keywords:
microwave radiation, natural compounds, microwave extractionAbstract
Plants produce an amazing diversity of secondary metabolites, which have multiple functions throughout the plant’s life cycle. Extraction is one of the crucial steps for research and development of plant secondary metabolites. The efficiency of processing and extraction of substances is determined by the speed and completeness of the physical and chemical processes underlying them. The analytical procedure, as a rule, consists of two stages: the first is the preparation of a sample using various extraction procedures (extraction in the Soxhlet apparatus, maceration, percolation, etc.), and the second stage is associated with direct analysis of substances (spectrophotometry, chromatography, spectrometry and others). If the analysis is usually completed after a few minutes, the extraction is the most limiting stage of the process, a lengthy and laborious process. That involves the use of large volumes of solvent, energy-intensive costs, especially at the concentration stage to extract the final extract. It also includes the risk of thermal decomposition of thermolabile active compounds. Various modifications of extraction procedures, which include the replacement of traditionally used solvents, the use of various physical factors, including ultrasonic and microwave processing and other areas, have been investigated and introduced. Microwave extraction is currently one of the areas of analytical chemistry, which quickly gained the position of one of the most effective and modern methods to increase the efficiency of extraction of biologically active compounds from vegetable raw materials. The review considers the effect of microwave radiation on plant material. Generalized material is on the use of microwave extraction for the selection of natural compounds, as well as the influence of various factors on the extraction process. The advantages and disadvantages of the presented method are considered.
References
[1] Anastas P. T., Warner J. C. Green Chemistry: Theory and Practice. New York: Oxford University Press, 1998.
[2] Velikorodov A.V., Tyrkov A.G. Zelenaja himija. Metody, reagenty i innovacionnye tehnologii. Astrahan': Astrahanskij universitet, 2010. 258 p.
[3] Sheldon R.A. Fundametals of green chemistry: Efficiency in reaction design // Chemical Society Reviews. 2012. Vol. 41, N 4. P. 1437-1451.
[4] Armenta S., Esteve-Turrillas F.A., Garrigues S., Guardia M. Chapter One: Green Analytical Chemistry: The Role of Green Extraction Techniques // Comprehensive Analytical Chemistry. 2017. Vol. 76. P. 1-25.
[5] Tobiszewski M., Namieśnik J. Greener organic solvents in analytical chemistry // Current Opinion in Green and Sustainable Chemistry. 2017. Vol. 5. P. 1-4
[6] Armenta S., Garrigues S., Guardia M. The role of green extraction techniques in Green Analytical Chemistry // ТrAC Trends in Analytical Chemistry. 2015. Vol. 71. P. 2-8.
[7] Mingos D.M.P., Baghurst D.R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry // Chemical Society Reviews. 1991. N 20. P. 1-47.
[8] Prutenskaja E.A., Sul'man Je.M., Sul'man M.G., Selivanova E.V. Ispol'zovanie ul'trazvuka v himii i biotehnologii. Tver': TGTU, 2011. 92 p.
[9] Berdonosov S.S., Berdonosova D.G., Znamenskaja I.V. Mikrovolnovoe izluchenie v himicheskoj praktike // Himicheskaja tehnologija. 2000. N 3. P. 2-8
[10] Rahmankulov D.L., Bikbulatov I.H., Shulaev N.S., Shavshukova S.Ju. Mikrovolnovoe izluchenie i intensifikacija himicheskih processov. M.: Himija, 2003. 220 P.
[11] Kurbakova I.V. Mikrovolnovoe obluchenie v analiticheskoj himii: vozmozhnosti i perspektivy ispol'zovanija // Uspehi himii. 2002. Vol. 71, N 4. P. 327-340.
[12] Letellier M., Budzinski H. Microwave assisted extraction of organic compounds // Analusis. 1999. Vol. 27. P. 259-271.
[13] Kharlamova Т.V., Praliyev К.D. Microwave radiation, its influence on solutions and use for extraction of components of plant material. 1-st Report. The systems of microwave-assisted extraction and their application for extraction of natural compounds // Chemical Journal of Kazakhstan. 2018. N 4. P. 76-98.
[14] Calle I., Costas-Rodríguez M. Microwaves for Greener Extraction (Chapter 9) // The Application of Green Solvents in Separation Processes. 2017. P. 253-300.
[15] Markin V.I., Cheprasova M.Ju., Bazarnova N.G. Osnovnye napravlenija ispol'zovanija mikrovolnovogo izluchenija pri pererabotke rastitel'nogo syr'ja // Himija rastitel'nogo syr'ja. 2014. N 4. P. 21-42.
[16] Kokolakis A.K., Golfinopoulos S.K. Microwave-assisted techniques (MATs); a quick way to extract a fragrance: A review // Natural Product Communications. 2013. Vol. 8, N 10. P. 1493-1504.
[17] Perino S., Petitcolas E., Guardia M., Chemat F. Portable microwave assisted extraction: An original concept for green analytical chemistry // Journal of Chromatography A. 2013. Vol. 1315. P. 200-203.
[18] Mandal V., Mohan Y., Hemalatha S Microwave assisted extraction - An innovative and promising extraction tool for medicinal plant research // Pharmacognosy Reviews. 2007. Vol. 1, N 1. P. 7-18
[19] Zhang H-F., Yang X.-H., Wang Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions // Trends in Food Science and Technology. 2011. Vol. 22, Issue 12. P. 672-688.
[20] Chan C-H., Yusoff R., Ngoh Gek-C., Wai-Lee F. Kung Microwave-assisted extractions of active ingredients from plants // Journal of Chromatography A. 2011. Vol. 1218, Issue 37. P. 6213-6225.
[21] Luque de Castro M.D., Castillo-Peinado L.S. Microwave-Assisted Extraction of Food Components // Innovative Food Processing Technologies. 2016. Part 3. P. 57-110.
[22] Luque de Castro M.D., Garcia-Ayuso L.E. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future // Anal. Chim. Acta. 1998. Vol. 369, Issue 1-2. P. 1-10.
[23] Mason T.J., Chemat F., Vinatoru M. The extraction of natural products using ultrasound or microwaves // Current Organic Chemistry. 2011. Vol. 15, N 2. P. 237-247.
[24] Vinatoru M., Mason T.J., Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials // TrAC Trends in Analytical Chemistry. 2017. Vol. 97. P. 159-178.
[25] Ondruschka B., Asghari J. Microwave-Assisted Extraction – A State-of-the-Art Overview of Varieties // Chimia. International Journal for Chemistry. 2006. Vol. 60, Issue 6. P. 321-325.
[26] Saha S., Singh A.K., Keshari A.K., Raj V., Rai A., Maity S. Chapter 2 – Modern Extraction Techniques for Drugs and Medicinal Agents // Ingredients Extraction by Physicochemical Methods in Food (A volume in Handbook of Food Bioengineering). 2018. P. 65-106.
[27] Li Y., Fabiano-Tixier A.S., Vian M.A., Chemat F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry // TrAC Trends in Analytical Chemistry. 2013. Vol. 47. P. 1-11.
[28] Kaufmann B., Christen P. Recent extraction techniques for natural products: microwaveassisted extraction and pressurized solvent extraction // Phytochemical Analysis. 2002. Vol. 13. P. 105-113.
[29] www.scopus.com
[30] Gao M., Huang W., Moytri R. C., Liu C. Microwave assisted extraction of scutellarin from Erigeron breviscapus Hand-Mazz and its determination by high-performance liquid chromatography // Analytica Chimica Acta. 2007. Vol. 591. P. 161-166.
[31] Zhou H., Liu C. Microwave-assisted extraction of solanesol from tobacco leaves // Journal of Chromatography A. 2006. Vol. 1129. P. 135-139.
[32] Yang X. H., Zhang H. F. Effects of microwave irradiation on extraction of epimedin B from Herba Epimedii. // Chinese Traditional and Herbal Drugs. 2011. Issue 9. P.1719-1723.
[33] Proestos C., Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds // LWT - Food Science and Technology. 2008. Vol. 41, Issue 4. P. 652-659.
[34] Fang X., Wang J., Hao J., Li X., Guo N. Simultaneous extraction, identification and quantification of phenolic compounds in Eclipta prostrata using microwave-assisted extraction combined with HPLC–DAD–ESI–MS/MS // Food Chemistry. 2015. Vol. 188. P. 527-536.
[35] Delgado-Torre M.P., Ferreiro-Vera C., Priego-Capote F., Pérez-Juan P.M., Luque De Castro M.D. Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars // Journal of Agricultural and Food Chemistry. 2012. Vol. 60, Issue 12. P. 3051-3060.
[36] Mahibalan S., Sharma R., Vyas A., Basha S.A., Begum A.S. Assessment of extraction techniques for total phenolics and flavonoids from Annona muricata seeds // Journal of the Indian Chemical Society. 2013. Vol. 90, N 12. P. 2199-2205.
[37] Dahmoune F., Spigno G., Moussi K., Remini H., Madan K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction // Industrial Crops and Products. 2014. Vol. 61. P. 31-40.
[38] Pan Y., Wang K., Huang S., Wang H., Mu X., He C., Ji X., Zhang J., Huang F. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel // Food Chemistry. 2008. Vol. 106, Issue 3. P. 1264-1270.
[39] Zhang L., Wang Y., Wu D., Xu M., Chen J. Microwave-assisted extraction of polyphenols from camellia oleifera fruit hull // Molecules. 2011. Vol. 16, N 6. P. 4428-4437.
[40] Moreira M.M., Barroso M.F., Boeykens A., Withouck H., Delerue-Matos C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction // Industrial Crops and Products. 2017. Vol. 104. P. 210-220.
[41] Ciulu M., Quirantes-Piné R., Spano N., Sanna G., Segura-Carretero A. Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves // Industrial Crops and Products. 2017. Vol. 108. P. 106-112.
[42] Karabegović I.T., Stojičević S.S., Veličković D.T., Todorović Z.B., Nikolić N.T., Lazić M.L. The effect of different extraction techniques on the composition and antioxidant acti- vity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts // Industrial Crops and Products. 2014. Vol. 54. P. 142-148.
[43] Krishnan R.Y., Chandran M.N., Vadivel V., Rajan K.S. Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula // Separation and Purification Technology. 2016. Vol. 170. P. 224-233.
[44] Bai L.S., Yang Y., Lv D.D. Microwave extraction of total flavonoids in peanut skins //
Zhong yao cai = Zhongyaocai (Journal of Chinese medicinal materials). 2012. Vol. 35, N 6. P. 977-980.
[45] Yan Z., da-Yun S., Jing-Shu Z., Hong-Li Z. Microwave-assisted extraction and antihyperlipidemic effect of total flavonoids from corn silk // African Journal of Biotechnology. 2011. Vol. 10, N 65. P. 14583-14586.
[46] Lu Y., Luthria D. Influence of gelatinization on the extraction of phenolic acids from wheat fractions // Food Chemistry. 2016. Vol. 194. P. 1138-1142.
[47] Garofulić I.E., Dragović-Uzelac V., Jambrak A.R., Jukić M. The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca) // Journal of Food Engineering. 2013. Vol. 117, Issue 4. P. 437-442.
[48] Farzaneh V., Carvalho I.S. Modelling of Microwave Assisted Extraction (MAE) of Anthocyanins (TMA) // Journal of Applied Research on Medicinal and Aromatic Plants. 2017.
Vol. 6. P. 92-100.
[49] Pinela J., Prieto M.A., Carvalho A.M., Barreiro M.F., Oliveira B.M. P.P., Barros L., Ferreira I.C.F.R. Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study // Separation and Purification Technology. 2016. Vol. 164. P. 114-124.
[50] Setyaningsih W., Saputro I.E., Palma M., Barroso C.G. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains // Food Chemistry. 2015. Vol. 169. P. 141-149.
[51] Hayat K., Hussain S., Abbas S., Farooq U., Ding B., Xia S., Jia C., Zhang X., Xia W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro // Separation and Purification Technology. 2009. Vol. 70, Issue 1. P. 63-70.
[52] Mao Y., Li Y., Yao N. Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L. by microwave assisted extraction and high-performance liquid chromatography // Journal of Pharmaceutical and Biomedical Analysis. 2007. Vol. 45. P. 510-515.
[53] Mandal V., Mohan Y., Hemalatha S. Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design // Journal of Pharmaceutical and Biomedical Analysis. 2008. Vol. 46, Issue 2. P. 322-327.
[54] Caleja C., Barros L., Prieto M.A., Barreiro M. F., Ferreira I.C.F.R. Extraction of rosmarinic acid from Melissa officinalis L. by heat-, microwave- and ultrasound-assisted extraction techniques: A comparative study through response surface analysis // Separation and Purification Technology. 2017. Vol. 186. P. 297-308.
[55] Bellumori M., Innocenti M., Binello A., Boffa L., Cravotto G. Selective recovery of rosmarinic and carnosic acids from rosemary leaves under ultrasound- and microwave-assisted extraction procedures // Comptes Rendus Chimie. 2016. Vol. 19, Issue 6. P. 699-706.
[56] Belwal T., Bhatt I.D., Rawal R.S., Pande V. Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. Leaves // Industrial Crops and Products. 2017. Vol. 95. P. 393-403.
[57] Wu T., Yan J., Liu R., Marcone M.F., Tsao R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design // Food Chemistry. 2012. Vol. 133, Issue 4. P. 1292-1298.
[58] Li H., Chen B., Zhang Z., Yao S. Focused microwave assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies) // Talanta. 2004. Vol. 63, Issue 3. P. 659-665.
[59] Hu F., Deng C., Liu Y., Zhang X. Quantitative determination of chlorogenic acid in Honeysuckle using microwave-assisted extraction followed by nano-LC-ESI mass spectrometry // Talanta. 2009. Vol. 77. P. 1299-1303.
[60] Martino E., Ramaiola I., Urbano M., Bracco F., Collina, S. Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction // Journal of Chromatography A. 2006. Vol. 1125. P. 147-151.
[61] Lee G.D., Lee S.Y., Kim K.S., Kwon, J.H. The optimization of microwave-assisted extraction of decursin from Angelica gigas Nakai root // International Journal of Food Science and Technology. 2006. Vol. 41. P. 737-742.
[62] Xiao X., Guo Z., Deng J., Li G. Separation and purification of isofraxidin from Sarcandra glabra by microwaveassisted extraction coupled with high-speed counter-current chromatography // Separation and Purification Technology. 2009. Vol. 68. P. 250-254.
[63] Tang X., Zhu D., Huai W., Zhang W., Fu C., Xie X., Quan S., Fan H. Simultaneous extraction and separation of flavonoids and alkaloids from Crotalaria sessiliflora L. by micro- wave-assisted cloud-point extraction // Separation and Purification Technology. 2017. Vol. 175. P. 266-273.
[64] Vieira V., Prieto M.A., Barros L., Coutinho J.A.P., Ferreira I.C.F.R. Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves // Industrial Crops and Products. 2017. Vol. 107. P. 341-352.
[65] Duval J., Pecher V., Poujol M., Lesellier E. Research advances for the extraction, analysis and uses of anthraquinones: A review.// Industrial Crops and Products. 2016. Vol. 94. P. 812-833.
[66] Yang Y.C., Li J., Zu Y.G., Fu Y.J., Luo M., Wu N., Liu X.L. Optimisation of microwaveassisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity // Food Chemistry. 2010. Vol. 122, Issue 1. P. 373-380.
[67] Rhazi N., Oumam M., Hannache H., Sesbou A., Charrier B., Pizzi A., Charrier–El Bouhtoury F. Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. // Industrial Crops and Products. 2015. Vol. 70. P. 245-252.
[68] Zou T., Wu H., Li H., Jia Q., Song G. Comparison of microwave-assisted and conventional extraction of mangiferin from mango (Mangifera indica L.) leaves // Journal of Separation Science. 2013. Vol. 36, Issue 20. P. 3457-3462.
[69] Ma C.H., Liu T.T., Yang L., Zu Y.G., Chen X., Zhang L., Zhang Y., Zhao C. Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits // Journal of Chromatography A. 2011. Vol. 1218, Issue 48. P. 8573-8580.
[70] Jiang Z., Liu F., Goh J.J.L., Yu L., Li S.F.Y., Ong E.S., Ong C.N. Determination of senkirkine and senecionine in Tussilago farfara using microwave-assisted extraction and pressurized hot water extraction with liquid chromatography tandem mass spectrometry. // Talanta. 2009. Vol. 79, Issue 2. Р. 539-546.
[71] Shang X., Guo X., Li B., Pan H., Zhang J., Zhang Y., Miao X. Microwave-assisted extraction of three bioactive alkaloids from Peganum harmala L. and their acaricidal activity against Psoroptes cuniculi in vitro // Journal of Ethnopharmacology. 2016. Vol. 192. P. 350-361.
[72] Fulzele D. P., Satdive R. K. Comparison of techniques for the extraction of the anticancer drug camptothecin from Nothapodytes foetida. // Journal of Chromatography A. 2005. Vol. 1063. P. 9-13.
[73] Zhang F., Chen B., Xiao S., Yao S. Optimization and comparison of different extraction techniques for sanguinarine and chelerythrine in fruits of Macleaya cordata (Willd) R. Br. // Separation and Purification Technology. 2005. Vol.42. Р. 283-290.
[74] Xie D.-T., Wang Y.-Q., Kang Y., Hu Q.-F., Su N.-Y., Huang J.-M., Che C.-T., Guo J.-X. Microwave-assisted extraction of bioactive alkaloids from Stephania sinica // Separation and Purification Technology. 2014. Vol. 130. P. 173-181.
[75] Zhang W., Zhu D., Fan H., Liu X., Wan Q., Wu X., Liu P., Tang J.Z. Simultaneous extraction and purification of alkaloids from Sophora flavescens Ait. by microwave-assisted aqueous two-phase extraction with ethanol/ammonia sulfate system // Separation and Purification Technology. 2015. Vol. 141. P. 113-123.
[76] Xiong1 W., Chen1 X., Lv G., Hu D., Zhao J., Li S. Optimization of microwave-assisted extraction of bioactive alkaloids from lotus plumule using response surface methodology // Journal of Pharmaceutical Analysis. 2016. Vol. 6. P. 382-388.
[77] González-Nuñez L.N., Cañizares-Macías M.P. Focused microwaves-assisted extraction of theobromine and caffeine from cacao // Food Chemistry. 2011. Vol. 129, Issue 4. P. 1819-1824.
[78] Chumnanpaisont N., Niamnuy C., Devahastin S. Mathematical model for continuous and intermittent microwave-assisted extraction of bioactive compound from plant material: Extraction of -carotene from carrot peels // Chemical Engineering Science. 2014. Vol. 116. P. 442-451.
[79] Piñeiro Z., Marrufo-Curtido A., Vela C., Palma M. Microwave-assisted extraction of stilbenes from woody vine material // Food and Bioproducts Processing. 2017. Vol. 103. P. 18-26.
[80] Feng X., Song H., Dong B., Yang Y., Yao S. Sequential extraction and separation using ionic liquids for stilbene glycoside and anthraquinones in Polygonum multiflorum // Journal of Molecular Liquids. 2017. Vol. 241. P. 27-36.
[81] Ren Y., Chen Y., Hu B., Wu H., Lai F., Li X. Microwave-assisted extraction and a new determination method for total steroid saponins from Dioscorea zingiberensis C.H. Wright // Steroids. 2015. Vol. 104. P. 145-152.
[82] Yan M.M., Liu W., Fu Y.J., Zu Y.G., Chen C.Y., Luo M. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali // Food Chemistry. 2010. Vol. 119, N 4. P. 1663-1670.
[83] Das A.K., Mandal V., Mandal S.C. Design of experiment approach for the process optimisation of microwave assisted extraction of lupeol from ficus racemosa leaves using response surface methodology // Phytochemical Analysis. 2013. Vol. 24, N 3. P. 230-247.
[84] Koptelova E.N., Kutakova N.A., Tret'jakov S.I. Izvlechenie jekstraktivnyh veshhestv i betulina iz beresty pri vozdejctvii SVCh-polja // Himija rastitel'nogo syr'ja. 2013. N 4. P. 159-164.
[85] Medina A.L., Oseas da Silva M.A., de Sousa Barbosa H., Zezzi Arruda M.A., Bragagnolo N. Rapid microwave assisted extraction of meat lipids // Food Research International. 2015.
Vol.78. P. 124-130.
[86] Yanık D.K. Alternative to traditional olive pomace oil extraction systems: Microwaveassisted solvent extraction of oil from wet olive pomace // LWT - Food Science and Technology. 2017. Vol. 77. P. 45-51.
[87] Iqbal J., Theegala C. Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent // Algal Research. 2013. Vol. 2, Issue 1. P. 34-42.
[88] Brodie G., Harris G., Jacob M.V., Sheehan M., Yin L. Microwave modification of sugar cane to enhance juice extraction during milling. // Journal of Microwave Power and Electromagnetic Energy. 2011. Vol. 45, Issue 4. P. 178-187.
[89] Hu B., Li C., Zhang Z., Zhao Q., Zhub Y., Sua Z., Chen Y. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities // Food Chemistry. 2017. Vol. 231. P. 348-355.
[90] Ma C.H., Yang L., Zu Y.G., Liu T.T. Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill // Food Chemistry. 2012. Vol. 134, Issue 4 . P. 2532-2539.
[91] Boukhari F., Tigrine-Kordjani N., Youcef Meklati B. Phytochemical investigation by microwave-assisted extraction of essential oil of the leaves of walnut cultivated in Algeria // Helvetica Chimica Acta. 2013. Vol. 96, N 6. P. 1168-1175.
[92] Uysal B., Sozmen F., Buyuktas B.S. Solvent-free microwave extraction of essential oils from Laurus nobilis and Melissa officinalis: Comparison with conventional hydro- distillation and ultrasound extraction // Natural Product Communications. 2010. Vol. 5, N 1. P. 111-114.
[93] Bajpai V.K., Sharma A., Kim S.H., Baek K.H. Phenolic content and antioxidant capacity of essential oil obtained from sawdust of Chamaecyparis obtusa by microwave-assisted hydrodistillation // Food Technology and Biotechnology. 2013. Vol. 51, N 3. P. 360-369.
[94] Orio L., Cravotto G., Binello A., Pignata G., Nicola S., Chemat F. Hydrodistillation and in situ microwave-generated hydrodistillation of fresh and dried mint leaves: A comparison study // Journal of the Science of Food and Agriculture. 2012. Vol. 92, N 15. P. 3085-3090.
[95] Li X.J., Wang W., Luo M., Li C.Y., Zu Y.G., Mu P.S., Fu Y.J. Solvent-free microwave extraction of essential oil from Dryopteris fragrans and evaluation of antioxidant activity // Food Chemistry. 2012. Vol. 133, Issue 2. P. 437-444.
[96] Azar P.A., Tehrani M.S., Hosain S.W., Khalilzadeh M.A., Zanousi M.B.P. Solvent-free microwave extraction of essential oil of artemisia tschernieviana // Asian Journal of Chemistry. 2012. Vol. 24, N 11. P. 5388-5390.
[97] Wang L., Weller C. L. Recent advances in extraction of nutraceuticals from plants // Trends in Food Science and Technology. 2006. Vol. 17. P. 300-312.
[98] Waksmundzka-Hajnas M., Petruczynik, Dragan A., Wianowska D., Dawidowicz A.L., Sowa I. Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits // Journal of Chromatography B. 2004. Vol. 800. P. 181-187.
[99] Hemwimon S., Pavasant P., Shotipruk A. Microwaveassisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia // Separation and Purification Technology. 2007. Vol. 54. P. 44-50.
[100] Tameshia S. B., Parameswarakumar M., Kequan Z., Sean O. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins // Food Chemistry. 2010. Vol. 120. P. 1185-1192.
[101] Xiao W., Han L., Shi B. Microwave-assisted extraction of flavonoids from Radix Astragali // Separation and Purification Technology. 2008. Vol.62. P. 614-618.
[102] Rostagno M.A., Villares A., Guillamón E., García-Lafuente A., Martínez J.A. Sample preparation for the analysis of isoflavones from soybeans and soy foods // Journal of Chromatography A. 2009. Vol. 1216, Issue 1. P. 2-29.
[103] Kiss G.A.C., Forgacs E., Serati T.C., Mota T., Morais H., Ramos A. Optimisation of the microwave assisted extraction of pigments from paprika (Capsicum annum L.) powders // Journal of Chromatography. A. 2000. Vol. 889, Issue 1-2. P. 41-49.
[104] Talebi M., Ghassempour A., Talebpour Z., Rassouli A., Dolatyari L. Optimization of the extraction of paclitaxel from Taxus baccata L. by the use of microwave energy // Journal of Separation Science. 2004. Vol. 27. P. 1130-1136.
[105] Pan X., Niu G., Liu H. Microwave assisted extraction of tanshinones from Salvia miltiorrhiza bunge with analysis by high performance liquid chromatography // Journal of Chromatography A. 2001. Vol. 922, Issue 1-2. P. 371-375.
[106] Xie J.-H., Dong C.-J., Nie S.-P., Li F., Wang Z.-J., Shen M.-Y., Xie M.-Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves // Food Chemistry. 2015. Vol. 186. P. 97-105
[107] Kwon J., Lee G., Belanger J.M.R., Pare J.R.J. Effect of ethanol concentration on the efficiency of extraction of ginseng saponins when using a microwave assisted process // Journal of Food Science and Technology. 2003. Vol. 38. P. 615-622.
[108] Teng H., Lee · W.Y. Optimization of Microwave-assisted Extraction of Polyphenols from Mulberry Fruits (Morus alba L.) Using Response Surface Methodology // Journal Korean Soc. Appl. Biol. Chem. 2013. Vol. 56. P. 317-324.
[109] Pan X., Liu H., Jia G., Shu Y.Y. Microwave assisted extraction of glycyrrhizic acid from licorice root // Biochemical Engineering Journal. 2000. Vol. 5. P. 173-177
[110] Chan L., Ding L., Zhang H., Hi J., Wang Y., Wang X., Qu C., Zhang H. Dynamic microwave assisted extraction coupled with on-line spectrophotometric determination of safflower yellow in Flos carthami // Anal. Chim. Acta. 2006. Vol. 580. P. 75-82.
[111] Sterbova D., Matejicek D., Vlcek J., Kuban V. Combined microwave assisted isolation and solid- phase purification procedures prior to the chromatographic determination of phenolic compounds in plant materials // Analytica Chimica Acta. 2004. Vol. 513, Issue 2. P. 435-444.
[112] Casazza A.A., Aliakbarian B., Mantegna S., Cravotto G., Perego P. Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques // J. Food Eng. 2010. Vol. 100, Issue 1. P. 50-55.
[113] Lu Y., Yue X.F., Zhang Z.Q., Li X.X., Wang K. Analysis of Rodgersia aesculifolia Batal. Rhizomes by Microwave-Assisted Solvent Extraction and GC–MS // Chromatographia. 2007. Vol 66. Issue 5-6. P. 443-446.
[114] Alfaro M.J., Belanger J.M.R., Padilla F.C., Pare J.R.R. Influence of solvent, matrix dielectric properties and applied power on the liquid-phase microwave assisted extraction of ginger (Zingiber officinale) // Food Research International. 2003. Vol. 36. P. 499-504.
[115] Bieri S., Ilias Y., Bicchi C., Veuthey J.L., Christen P. Focused microwave assisted extraction combined with solid phase micro extraction and gas chromatography- mass spectrometry for the selective analysis of cocaine from coca leaves // Journal of Chromatography A. 2006. Vol. 1112. P. 127-132.
[116] Pan X., Niu G., Liu H. Microwave assisted extraction of tea polyphenols and tea caffeine from green tea leaves // Chemical Engineering and Processing. 2003. Vol. 42. P. 129-133.
[117] Shu Y.Y., Ko M.Y., Y.S. Chang Y.S. Microwave assisted extraction of ginsenosides from ginseng root // Microchemical Journal. 2003. Vol. 74. P. 131-139.
[118] Gao M., Song B., Lin C. Dynamic microwave assisted extraction of flavonoids from Saussurea medusa Maxim. Cultured cells // Biochemical Engineering Journal. 2006. Vol. 332. Р. 79-83.
[119] Hao J., Han W., Huang S., Xue B., Deng X. Microwave-assisted extraction of artemisinin from Artemisia annua L. // Separation and Purification Technology. 2002. Vol 28. Issue 3. P. 191-196.
[120] Wang J., Zhang J., Wang X., Zhao B., Wu Y., Yao J. A comparison study on microwave-assisted extraction of Artemisia sphaerocephala polysaccharides with conventional method: Molecule structure and antioxidant activities evaluation // International Journal of Biological Macromolecules. 2009. Vol. 45, Issue 5. P. 483-493.
[121] Spingo G., Faveri D.M.D. Microwave-assisted extraction of tea phenols: a phenomenological study // Journal of Food Engineering. 2009. Vol. 93. P. 210-217.
[122] Tsubaki S., Sakamoto M., Azuma J. Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions // Food Chemistry. 2010. Vol. 123, Issue 4. P. 1255-1258.
[123] Barbero G.F., Palma M., Barroso C.G. Determination of capsacinoids in peppers by microwave assisted extraction high performance liquid chromatography with fluorescence detection // Analytica Chimica Acta. 2006. Vol. 578. P. 227-233.
[124] Yang Z., Zhai W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS // Innovative Food Science and Emerging Technologies. 2010. Vol. 11, Issue 3. P. 470-476
[125] Bampouli A., Kyriakopoulou K., Papaefstathiou G., Louli V., Aligiannis N., Magou- las K., Krokida M. Evaluation of total antioxidant potential of Pistacia lentiscus var. chia leaves extracts using UHPLC–HRMS // Journal of Food Engineering. 2015. Vol. 167. P. 25-31.
[126] Zheng X., Wang X., Lan Y., Shi J., Xue S.J., Liu C. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds // Separation and Purification Technology. 2009. Vol. 70, Issue 1. P. 34-40.
[127] Kong Y., Zu Y.G., Fu Y.J., Liu W., Chang F.R., Li J., Chen Y.H., Zhang S., Gu C.B. Optimization of microwave-assisted extraction of cajaninstilbene acid and pinostrobin from pigeonpea leaves followed by RP-HPLC-DAD determination // Journal of Food Composition and Analysis. 2010. Vol. 23, Issue 4. P. 382-384.
[128] Chan C.H., Yusoff R., Ngoh G.C. Assessment of scale-up parameters of microwaveassisted extraction via the extraction of flavonoids from cocoa leaves // Chemical Engineering and Technology. 2014. Vol. 38. P. 1-9.
[129] Chan C.H., Yusoff R., Ngoh G.C. Optimization of microwave-assisted extractionba- sed on absorbed microwave power and energy // Chemical Engineering Science. 2014. Vol. 111. P. 41-47.
[130] Chan C.H., Yusoff R., Ngoh G.C. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy // Food Chemistry. 2013. Vol. 140. P. 147-153.
[131] Veggi P., Martinez J., Meireles M.A. Fundamentals of microwave extraction. In: Chemat, F., Cravotto G. (Eds.) Microwave-Assisted Extraction for Bioactive Compounds // Food Engineering Series. Springer, 2013. US. P. 15-52.