THE UNIFIED METHOD OF CALCULATION THE THERMODINAMIC FUNCTIONS OF THE INTERMEDIATE FRACTION OF COAL TAR

Authors

  • N. ZH. BALPANOVA Karaganda University named after academician Ye.A. Buketov
  • M. I. BAIKENOV Karaganda University named after academician Ye.A. Buketov
  • D. E. AITBEKOVA Karaganda University named after academician Ye.A. Buketov
  • A. T. OMAROVA Karaganda University named after academician Ye.A. Buketov
  • A. TUSIPKHAN Karaganda University named after academician Ye.A. Buketov
  • R. S. SEITZHAN Karaganda University named after academician Ye.A. Buketov

Keywords:

unified additive method, thermodynamic functions, coal tar, cavitation, hydroconversion reaction

Abstract

Separate isolated organic compounds with a known molecular structure as well as a unified additive method (UAM) have been used in order to calculate the thermodynamic functions of heat capacityСр(T), of enthalpy ΔH(T)and entropy S(T) and of Gibbs free energy ΔGf(T) for heavy raw materials. The datawere used thatachieved using elemental analysis and quantitative analysis of chromatography-mass spectrometryfor determining the thermodynamic functions of the process ofcoal tar cavitation of by UAM. The nature of the unified additive method is to consider the unit mass of a molecule or a complex molecular systems as the unit mass of individual structural fragments transferred from one system to another. Comparison of the results of calculations of thermodynamic functions obtained by UAM with reference data showed that they are well compatible, which, in turn, gives grounds for applying the unified additive method to complex systems.

References

[1] Kadiev Kh.M., Gyul'maliev A.M., Kubrin N.A. An additive method for calculating the thermodynamic functions of heavy feedstock // Petroleum Chemistry. 2016. Vol. 56, N 9. P. 805-811. DOI:10.1134/S0965544116090073

[2] Kadiev Kh.M., Zaytseva O.V., Magomadov E.E., Chernysheva E.A., Oknina N.V., Batov A.E., Kadieva M.Kh., Kapustin V.M., Khadzhiev S.N. Structural transformations of asphaltenes during hydroconversion of vacuum residue with recycling the hydroconversion product distillation residue // Petroleum Chemistry. 2015. Vol. 55, N 6. P. 487-496. DOI:10.1134/S0965544116090073

[3] Kadiev Kh.M., Gyul'maliev A.M., Kubrin N.A., Khadzhiev S.N. A rapid method for calculating the enthalpy of hydroconversion of heavy petroleum feedstock // Petroleum Chemistry. 2016. Vol. 56, N 8. P. 697-702. DOI:10.1134/S0965544116080089

[4] Gyul'maliev A.M., Golovin G.S., Gladun Т.G. Teoreticheskie osnovy himii uglia. М: Izdatel’stvo Moskovskoho gosudarstvennoho universiteta, 2003. 556 p.

[5] Balpanova N.Zh., Tusipkhan A., Gyul’maliev A.M., Ma F., Kyzkenova A.Zh., Aitbekova D.E., Khalikova Z.S., Baikenova G.G., Baikenov M.I. Kinetics of Cavitation of an Intermediate Fraction of Coal Tar // Solid Fuel Chemistry. 2020. Vol. 54(4). P. 208-213. DOI:10.3103/S0361521920040023

[6] Il’in V.B., Iakovenko Р.Е., Belashov D.М., Zemliakov N.D., Savost’ianov А.P. Termodinamicheskoe issledovaniie konversii poputnyh nephtiianyh gazov v metan // Nephtehimiia. 2019. Vol. 59, N 7. O. 815-824.

[7] Yarkova T.A., Kairbekov Z.K., Eshova Z.T., Aubakirov E.A., Kairbekov A.Z., Gyul’maliev A.M. Thermodynamics of gasification of organic matter of brown coal using oxidants of various compositions // Chemistry and Technology of Fuels and Oils. 2017. Vol. 53, N 1. P. 45-53.

[8] Le A.D., Okajima J., Iga Y. Numerical simulation study of cavitation in liquefied hydrogen // Cryogenics. 2019. Vol. 101. P. 29-35. DOI:10.1016/j.cryogenics.2019.04.010

[9] Avvaru B., Venkateswaran N., Uppara P., Iyengar S.B., Katti S.S. Current knowledge and potential applications of cavitation technologies for the petroleum industry // UltrasonicsSonochemistry. 2018. Vol. 42. P. 493-507. DOI:10.1016/j.ultsonch.2017.12.010

[10] Zaytseva O.V., Magomadov E.E., Kadiev Kh.M., Chernysheva E.A., Kapustin V.M., Khadzhiev S.N. A study of structural transformations of asphaltene molecules during hydroconversion of vacuum residue at various temperatures in the presence of nanosized molybdenum disulfide particles // Petroleum Chemistry. 2013. Vol. 53, N 5. P. 309-315. DOI:10.1134/S0965544113050113

[11] Zhang S., Li X., Hu B., Liu Y., Zhu Z. Numerical investigation of attached cavitating flow in thermo-sensitive fluid with special emphasis on thermal effect and shedding dynamics // International Journal of Hydrogen Energy. 2019. Vol. 44(5). P. 3170-3184. DOI:10.1016/j.ijhydene.2018.11.224

[12] Zhang S., Li X., Zhu Z. Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects // Cryogenics. 2018. Vol. 92. P. 98-104. DOI:10.1016/j.cryogenics.2018.04.008

[13] Stall D., Vestram E., Zinke G.M. Himicheskaya termodinamika organicheskih soedinenii. M.: Mir, 1971. 807 p.

[14] Belov G.V., Trusov B.G. Termodinamicheskoe modelirovanie himicheski reagiruiushih system. М.: MGTU imeni N.E. Baumana, 2013. 96 p.

[15] Long X., Liu Q., Ji B., Lu Y. Numerical investigation of two typical cavitation shedding dynamics flow in liquid hydrogen with thermodynamic effects // International Journal of Heat and Mass Transfer. 2017. Vol. 109. P. 879-893. DOI:10.1016/j.ijheatmasstransfer.2017.02.063

Downloads

Published

2021-05-03