METHODS OF PRODUCTION OF AMINO ACIDS AND PROTEINS, LABELED WITHSTABLE ISOTOPЕS 2N, 13C, 14C, 15N, 18O

Authors

  • S. Turganbay SCAID
  • А. N. Sabitov SCAID
  • А. S. Kurmanbekov SCAID

Keywords:

sword stable isotope, amino acids, proteins, microorganisms

Abstract

The tendencies towards the preferred use of stable isotopes in comparison with their radioactive counterparts are due to the absence of radiation hazard and the possibility of determining the localization of the label in the molecule by high-resolution methods. That is why the development of ways to obtain amino acids and proteins labeled with stable isotopes is an urgent task for modern biotechnology. These isotopically labeled biologically active compounds (BACs) obtained by this method with different levels of isotopic enrichment, from selectively to uniformly labeled, are convenient tools for various metabolic and biochemical studies of medical diagnostics of various diseases of chemical syntheses of various isotopically labeled compounds based on them.This review covers modern biotechnological and enzymatic methods for the synthesis of amino acids and proteins, stable isotopes 2H, 13C, 15N, 18O. New perspectives for the application of described methods of amino acid synthesis and proteins, stable stable isotopes were considered. In particular, there are examples of the use of methods of nuclear magnetic resonance, infrared and laser spectroscopy, as well as mass spectroscopy in the process of biochemical synthesis of the above-mentioned compounds and the further information provided.

References

[1] Stryer L. Biochemistry. 3rd. W.H. Freeman, and Company. – New York, NY, USA, 1989.

[2] Blaskovich M.A. Handbook on Syntheses of Amino Acids. General Routes to Amino Acids // Oxford University Press. – New York, 2010.

[3] Hayashi T., Hamachi I. Traceless affinity labeling of endogenous proteins for functional analysis in living cells // Acc. Chem. Res. – 2012. – Vol. 45. – P. 1460-1469.

[4] Bertini I., Felli I.C., Gonnelli L., Kumar M.V., Pierattelli R. 13C Direct-detection biomolecular NMR Spectroscopy in living cells // Angew. Chem. Int. Ed. – 2011. – Vol. 50. – P. 2339-2341.

[5] Westler W.M., Stockman B.J. Correlation of carbon-13 and nitrogen-15 chemical shifts in selectively and uniformly labeled proteins by heteronuclear two-dimensional NMR spectroscopy // J. Am. Chem. Soc. – 1988. – Vol. 110. – P. 6256-6258.

[6] Kainosho M., Torizawa T. Optimal isotope labeling for NMR protein structure determinations // Nature. – 2006. – Vol. 440. – P. 52-57.

[7] Takeda M., Ikeya T. Automated structure determination of proteins with the SAIL-FLYA NMR method // Nat. Protoc. – 2007. – Vol. 2. – P. 2896-2902.

[8] Guo C. High resolution measurement of methyl 13C(m)-13C and 1H(m)-13C(m) residual dipolar couplings in large proteins // J. Am. Chem. Soc. – 2010. – Vol. 132. – P. 13984-13987.

[9] Otten R., Chu B. Comprehensive and cost-effective NMR Spectroscopy of methyl groups in large proteins // J. Am. Chem. Soc. – 2010. – Vol. 132. – P. 2952-2960.

[10] Ayala I., Hamelin O. An optimized isotopic labelling strategy of isoleucine-γ2 methyl groups for solution NMR studies of high molecular weight proteins // Chem. Commun. – 2012. – Vol. 48. – P. 1434-1436.

[11] Pandey M.K., Vivekanandan S., Ahuja S. Determination of 15N chemical shift anisotropy from a membrane-bound protein by NMR Spectroscopy // J. Phys. Chem. B. – 2012. – Vol. 116. – P. 7181-7189.

[12] Elavarasi S.B., Kumari A., Dorai K. Using the Chemical Shift Anisotropy Tensor of Carbonyl Backbone Nuclei as a Probe of Secondary Structure in Proteins // J. Phys. Chem. A. – 2010. – Vol. 114. – P. 5830-5837.

[13] Zhu J., Ye E., Terskikh V., Wu G. Solid-state 17O-NMR spectroscopy of large protein-ligand complexes // Angew. Chem. Int. Ed. – 2010. – Vol. 49. – P. 8399-8402.

[14] Yu W., Dawson P.E., Zimmermann J. Carbon-deuterium bonds as probes of protein thermal unfolding // J. Phys. Chem. B. – 2012. – Vol. 116. – P. 6397-6403.

[15] Torizawa T., Shimizu M. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol // J. Biomol. NMR. – 2004. – Vol. 30. – P. 311-325.

[16] Kent S.B.H. Total chemical synthesis of proteins // Chem. Soc. Rev. – 2009. – Vol. 38. – P. 338-351.

[17] Metanis N., Keinan E., Dawson P.E. Traceless ligation of cysteine peptides using selective deselenization // Angew. Chem. Int. Ed. – 2010. – Vol. 49. – P. 7049-7053.

[18] Durek T., Alewood P.F. Preformed selenoesters enable rapid native chemical ligation at intractable sites // Angew. Chem. Int. Ed. – 2011. – Vol. 50. – P. 12042-12045.

[19] Shang S., Tan Z., Danishefsky S.J. Application of the logic of cysteine-free native chemical ligation to the synthesis of Human Parathyroid Hormone (hPTH) Proc // Natl. Acad. Sci. USA. – 2011. – Vol. 108. – P. 5986-5989.

[20] Reid C.M., Sutherland A. Synthesis of isotopically labeled α-amino Acids. In: Hughes A.B., editor. Amino Acids, Peptides and Proteins in Organic Chemistry: Origins and Synthesis of Amino Acid. – Vol. 1. Wiley-VCH Verlag GmbH and Co. KGaA. – Weinheim, Germany, 2009. – P. 473-494.

[21] Corey E.J., Kürti L. Enantioselective Chemical Synthesis. 1st. Direct Book Publishing, LLC. – Dallas, TX, USA, 2010.

[22] Winkler F.J., Kühnl K., Medina R. Principles and results of stable isotope labelling of L-α-Aminoacids by combined chemical and enzymatic methods // Isot. Environ. Health Stud. – 1995. – Vol. 31. – P. 161-190.

[23] Sonke T., Kaptein B., Schoemaker H.E. Use of enzymes in the synthesis of amino acids. In: Hughes A.B., editor. Amino Acids, Peptides and Proteins in Organic Chemistry: Origins and Synthesis of Amino Acid. Wiley-VCH Verlag GmbH and Co. KGaA. – Weinheim, Germany, 2009. – P. 79-117.

[24] Chen Y., Goldberg S.L., Hanson R.L., Parker W.L. Enzymatic preparation of an (S)-amino acid from a racemic amino acid. Org // Process Res. Dev. – 2011. – Vol. 15. – P. 241-248.

[25] Kürti L., Czakó B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier Academic Press; Amsterdam, The Netherlands: 2005.

[26] Vachal P., Jacobsen E.N. Structure-based analysis and optimization of a highly enantio-selective catalyst for the Strecker Reaction // J. Am. Chem. Soc. –2002. – Vol. 124. – P. 10012-10014.

[27] Pellissier H. Recent developments in dynamic kinetic resolution // Tetrahedron. – 2011. – Vol. 67. – P. 3769-3802.

[28] Cappon J.J., Witters K.D., Baart J. Synthesis of L-histidine specifically labelled with stable isotopes // Recl. Trav. Chim. Pays-Bas. – 1994. – Vol. 113. – P. 318-328.

[29] Liu P., Yang X., Birman V.B., Houk K.N. Origin of enantioselectivity in benzotetramisole-catalyzed dynamic kinetic resolution of azlactones // Org. Lett. – 2012. – Vol. 14. – P. 3288-3291.

[30] Smolka MB, Zhou H, Purkayastha S, et al. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis // Anal Biochem. – 2001. – Vol. 297. – P. 25-31.

[31] Cahill M.A., Wozny W., Schwall G., et al. Analysis of relative isotopologue abundances for quantitative profiling of complex protein mixtures labelled with the acrylamide / d3-acrylamide alkylation tag system // Rapid Commun Mass Spectrom. – 2003. – Vol. 17. – P. 1283-90.

[32] Reynolds K.J., Yao X., Fenselau C. Proteolytic 18O labeling for comparative proteomics: evaluation of endoprotease Glu-C as the catalytic agent // J. Proteome Res. – 2002. – Vol. 1. – P. 27-33.

[33] Yao X., Freas A., Ramirez J., et al. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus // Anal Chem. – 2001. – Vol. 73. – P. 2836–42.

[34] Jin Z., Knierman M.D., Patrick J.S., et al. Evaluation of a stable isotope labeled whole protein for absolute protein quantitation using lc/ms/ms and multiple reaction monitoring // In: Program and Abstract of the 54th ASMS Conference. – Seattle, WA, 2006.

[35] Beynon R.J., Pratt J.M. Metabolic labeling of proteins for proteomics // Mol Cell Proteomics. – 2005. – Vol. 4. – P. 857-72.

[36] Staunton D., Schlinkert R., Zanetti G., et al. Cell-free expression and selective isotope labeling in protein NMR // Magn Reson Chem. – 2006. – Vol. 44. – P. 2-9.

[37] Anderson N.L., Hunter C.L., Becker G.W., et al. Developing peptide MRM-based assays for cardiovascular biomarker proteins in plasma using a hybrid triple quadrapole linear ion trap mass spectrometer // In: Proceedings of the American Society for Mass Spectrometry, 53rd Annual ASMS Meeting, June 2005, San Antonio, TX, USA.

[38] Anderson L., Hunter C.L. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins // Mol Cell Proteomics. – 2006. – Vol. 5. – P. 573–88.

[39] Jin Z., Patrick J., Zhen Y., et al. Evaluation of a stable isotope labeled whole protein for absolute protein quantitation using LC/MS/MS and multiple reaction monitoring // In: Proceedings of the American Society for Mass Spectrometry, 54th Annual ASMS Meeting, June 2006, Seattle, WA, USA.

[40] Janecki D., Bemis K.G., Tegler T.J., et al. A multiple reaction monitoring method for absolute quantification of the human liver alcohol dehydrogenase ADH1C1 isoenzyme // Anal Biochem. – 2007. – Vol. 369. – P. 18-26.

Downloads

Published

2021-05-03