ISOLATION AND IDENTIFICATION OF FLAVONOIDS FROM LINOSYRIS VILLOSA PLANT

Authors

  • V. Nazarova Kozybayev University
  • N. Salikova Kozybayev University
  • A. Bektemissova Kozybayev University

Keywords:

Linosyris Villosa plant, Flavonoids, Paper Chromatography, Sorbent Separation, Qualitative and Quantitative Analysis, Kempferol, Quercetin, Myricetin, Extractive substances

Abstract

The study is devoted to an urgent topic - the isolation and identification of biologically active substances of the flavonoid structure in plant materials of Kazakhstan with the aim of further use of plants in medicine and pharmacology. The presence of biologically active substances in various plants has been established and has long been used to treat various diseases. The list of flavonoids of plant origin is constantly expanding and their biological activity is being studied. The object of the study was the plant Linosyris villosa, growing and harvested in northern Kazakhstan in the flowering phase. The study of the qualitative and quantitative composition of biologically active substances of the Linosyris Villosa plant growing in Northern Kazakhstan is carried out for the first time. The study applied the methods of two-dimensional and one-dimensional paper chromatography, column adsorption chromatography, gas chromatography, and IR spectroscopy. Plant extracts (hexane, ethanol, and water-alcohol) were obtained and studied for the presence of flavonoids using qualitative reactions. The amount of extractives was determined in the obtained extracts. Found that 70% alcohol is the best extractant of biologically active substances from the Linosyris villosa plant. Aglycones from all substances present in the extract were separated by alumina separation. As part of the aglycons, kempferol, quercetin, and myricetin were detected.

References

[1] Dixon R., Pasinetti G. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience // Plant Physiol. 2010. № 154. P. 453-457.

[2] Kumar S., Pandey A. Chemistry and biological activities of flavonoids: an overview // Scientific World Journal. 2013. P. 162-750.

[3] Hayat M., Abbas M., Munir F. Potential of plant flavonoids in pharmaceutics and nutraceutics // J. Biomol. Biochem. 2017. № 1(1). P. 12-17.

[4] Kujubu D., Fletcher B., Varnum B. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue // J. Biol. Chem. 1991. № 266. P. 12866-12872.

[5] Wu C., Wu S., Chung W. Antiplatelet effect and selective binding to cyclooxygenase (COX) by molecular docking analysis of flavonoids and lignans // Int. J. Mol. Sci. 2007. № 8. P. 830-841.

[6] Borevitz J.O., Xia Y., Blount J., Dixon R.A., Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis // Plant Cell. 2000. № 12. P. 2383-2394.

[7] Falcone Ferreyra M.L., Casas M.I., Questa J., Herrera L., Deblasio S., Wang J., Jackson D., Grotewold E., Casati P. Evolution and expression of tandem duplicated maize flavonol synthase genes // Front. Plant Sci. 2012. № 3: 101. doi: 10.3389/fpls.2012.00101.

[8] Ferreyra M.L.F., Rius S.P., Emiliani J., Pourcel L., Feller A., Morohashi K., Casati P., Grotewold E. Cloning and characterization of a UV-B-inducible maize flavonol synthase // Plant. J. 2010. № 62. P. 77-91.

[9] Feild T.S., Lee D.W., Holbrook N.M. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood // Plant Physiol. 2001. № 127. P. 566-574.

[10] Bovy A.G., De Vos R., Kemper M., Schijen E., Pertejo M.A., Muir S.R., Collins G., Robinson S., Verhoeyen M., Hughes S. High flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes Lc and C1 // Plant Cell. 2002. № 14. P. 2509-2526.

[11] Feller A., Machemer K., Braun E.L., Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors // Plant J. 2011. № 66. P. 94-116.

[12] Bowles D., Isayenkova J., Lim E.K., Poppenberger B. Glycosyltransferases: managers of small molecules // Curr. Opin. Plant. Biol. 2005. № 8. P. 254-263.

[13] Ferrer J., Austin M., Stewart C.J., Noel J. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids // Plant Physiol. Biochem. 2008. № 46. P. 356-370.

[14] Bogs J., Jaffe F.W., Takos A.M., Walker A.R., Robinson S.P. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development // Plant Physiol. 2007. № 143. P. 1347-1361.

[15] Burak M., Imen Y. Flavonoids and their antioxidant properties // Turkiye Klin. Tip. Bil. Derg. 1999. № 19. P. 296-304.

[16] Ovando C., Hernandez D., Hernandez E. Chemical studies of anthocyanins: a review // Food. Chem. 2009. № 113. P. 859-871

[17] Nazarova V.D.. Bakumova E.V. Flavonoidy rasteniya Linosyris villosa // Khimicheskiy zhurnal Kazakhstana. 2008. № 2. P. 348-353.

[18] Nazarova V.D.. Bektemisova A.U.. Akhankova E.V. Polifenoly rasteniya Linosyris villosa i ikh biologicheskaya aktivnost // Materialy X Mezhdunarodnogo simpoziuma «Fenolnyye soyedineniya: fundamentalnyye i prikladnyye aspekty». Moskva, 2018. P. 487-491.

[19] Akhankova E.V.. Nazarova V.D.. Muzychkina R.A. Vydeleniye kvertsetina iz rasteniya Linosyris villosa // Materialy VII mezhdunarodnoy nauchno-prakticheskoy konferentsii «Aktualnyye problemy nauki i obrazovaniya v oblasti estestvennykh i selskokhozyaystvennykh nauk». posvyashchennoy 90-letiyu akademika Tashenova K. Petropavlovsk. 2019. Vol.1. P. 132-136.

[20] Nazarova V.D. Akhankova E.V.. Bektemisova A.U. Extraction of quercetin from Linosyris Villosa // Khimicheskiy zhurnal Kazakhstana. 2018. № 2. P. 158-164.

[21] Star A.E. Frond exudate flavonoids as allelopathic agents in Pityrogramma // Bull. Torrey Botanical Club. 1980. № 107. P. 146-153.

[22] Cooper-Driver G. The role of flavonoids and related compounds in fern systematics // Bull. Torrey Botanical Club. 1980. № 107. P. 116-127.

[23] Kong C.H., Zhao H., Xu X.H., Wang P., Gu Y. Activity and allelopathy of soil of flavone O-glycosides from rice // J. Agric. Food Chem. 2007. № 55. P. 6007-6012.

[24] Khan M.T., Orhan I., Enol S.S. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies // Chem. Biol. Interact. 2009. № 181. P. 383-389.

[25] Smith R., DeWitt D., Garavito R. Cyclooxygenases: structural, cellular and molecular biology // Ann. Rev. Biochem.2000. № 69. P. 145-182.

[26] Fuhrman B., Lavy A., Aviram M. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoproteins to lipid peroxidation // Am. Soc. Nutr. 1995.№ 61. P. 549-554.

[27] Nishida R. Oviposition stimulant of a Zeryntiine swallowtail butterfly, Luehdorfia japonica // Phytochemistry. 1994. № 36. P. 873-877.

 

Published

2021-05-03