RARE-EARTH METAL SORPTION: LITERARY REVIEW

Authors

  • N. S. Murzakassymova Abai Kazakh National Pedagogical University
  • N. A. Bektenov Abai Kazakh National Pedagogical University
  • M. A. Gavrilenko the National Research Tomsk Polytechnic University

Keywords:

sorption, adsorption, technogenic formations, extraction, modification, isotherm, sorbent capacity

Abstract

Rare earth metals (REM) have attracted considerable attention due to their unique properties and their use in huge range of industrial applications. They are widely used in various sectors, such as nuclear energy, metallurgy, medicine, chemical engineering, electronics and computer manufacturing. As a result, the restoration of REMs is a significant problem that requires appropriate attention. There are many methods for recovering REM, such as precipitation, filtration, solvent extraction, etc., but these methods are not economically attractive. Among the available methods, adsorption methods have attracted wider attention because of their simplicity, high efficiency and low cost. The article presents the recently published literature relating to the removal of rare earth metals, an aqueous solution of various low-cost adsorbents. It is also discussed for this to best apply the model (isotherm, kinetics), thermodynamic studies and other factors that affect the adsorption process (for example, the effect of a solution pH, contact time, temperature).

References

[1] G.A. Moldoveanu, V.G. Papangelakis. Recovery of rare earth elements adsorbed on clay minerals // I. Desorption mechanism, Hydrometallurgy. 2012. № 117. Р. 71-78.

[2] F. Zhao, E. Repo, Y. Meng, X. Wang, D. Yin, M. Sillanpää. An EDTA-β-cyclodex-trinmaterial for the adsorption of rare earth elements and its application in

preconcentration of rare earth elements in seawater // J. Colloid Interface Sci. 2016. № 465. Р. 215-224.

[3] U.S.G. Survey, Rare Earths // Mineral Commodity Summaries. 2014. Р. 128-129.

[4] C. Kedari, S. Das, S. Ghosh. Biosorption of long lived radionuclides using immobilized cells of Saccharomyces cerevisiae // World J. Microbiol. Biotechnol. 2001. № 17. Р. 789-793.

[5] V. Anagnostopoulos, B. Symeopoulos. Significance of age, temperature, and aeration of yeast cell culture for the biosorption of europium from aquatic systems, Desalin // Water Treat. 2014. Р. 1-7 (DOI).

[6] K. Li, Q. Gao, G. Yadavalli, X. Shen, H. Lei, B. Han, K. Xia, C. Zhou. Selective adsorption of Gd3+ on a magnetically retrievable imprinted chitosan/carbon nanotube composite with high capacity // ACS Appl. Mater. Interfaces 7. 2015. 21047-21055.

[7] M. Tian, N. Song, D. Wang, W. Liao, L. Lin. Applications of the binary mixture of sec-octylphenoxyacetic acid and 8-hydroxyquinoline to the extraction of rare earth elements // Hydrometallurgy. 2012. № 111. Р. 109-113.

[8] Y. Zhu. A simple approach to fabricate granular adsorbent for adsorption of rare elements // Int. J. Biol. Macromol. 2015. № 72. Р. 410-420.

[9] T. Ogata. Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid // Hydrometallurgy. 2015. № 152. Р. 178-182.

[10] T. Ogata, H. Narita, M. Hoshino, Y. Kon, Y.Watanabe. Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands // Sep. Purif. Technol. 2016. № 159. Р. 157-160.

[11] A.A. Galhoum, M.G. Mafhouz, S.T. Abdel-Rehem, N.A. Gomaa, A.A. Atia, T. Vincent, E. Guibal. Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of light and heavy rare earth metals: uptake kinetics and sorption isotherms // Nanomaterials. 2015. № 5. Р. 154-179.

[12] A. Gładysz-Płaska, M. Majdan. Adsorption of La, Eu and Lu on raw and modified red clay // J. Radioanal. Nucl. Chem. 2014. № 301. Р. 33-40.

[13] E. Kamio, M. Matsumoto, F. Valenzuela, K. Kondo. Sorption behavior of Ga (III) and In (III) into a microcapsule containing long-chain alkylphosphonic acid monoester // Ind. Eng. Chem. Res. 2005. № 44. Р. 2266-2272.

[14] R. Kala, V. Biju, T.P. Rao. Synthesis, characterization, and analytical applications of erbium (III) ion imprinted polymer particles prepared via γ-irradiation with different functional and crosslinking monomers // Anal. Chim. Acta. 2005. № 549. Р. 51-58.

[15] S. Daniel, P.E. Babu, T.P. Rao. Preconcentrative separation of palladium(II) using palladium (II) ion-imprinted polymer particles formed with different quinoline derivatives and evalua-tion of binding parameters based on adsorption isotherm models // Talanta. 2005. № 65. Р. 441-452.

[16] C. Li, Z. Zhuang, F. Huang, Z.Wu, Y. Hong, Z. Lin. Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg (OH) 2 // ACS Appl. Mater. Interfaces. 2013. № 5. Р. 9719-9725.

[17] V. Diniz, B. Volesky. Biosorption of La, Eu and Yb using Sargassum biomass // Water Res. 2005. № 39. Р. 239-247.

[18] M.C. Palmieri, B. Volesky. Biosorption of lanthanum using Sargassum fluitans in batch system // Hydrometallurgy. 2002. № 67. Р. 31-36.

[19] S.K. Kazy, S.K. Das, P. Sar. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization // J. Ind. Microbiol. Biotechnol. 2006. № 33. Р. 773-783.

[20] X. Shuxia, S. ZHANG, C. Ke, H. Jinfeng. Biosorption of La 3+and Ce 3+ by Agrobacterium sp // HN1, J. Rare Earths. 2011. № 29. Р. 265-270.

[21] N. Awwad, H. Gad,M. Ahmad, H. Aly. Sorption of lanthanumand erbium fromaqueous solution by activated carbon prepared from rice husk // Colloids Surf. B: Biointerfaces. 2010. № 81. Р. 593-599.

[22] A. Vlachou, B. Symeopoulos. A comparative study of neodymium sorption by yeast cells // Radiochim. Acta. 2009. № 97. Р. 437-441.

[23] M.C. Palmieri, O. Garcia, P. Melnikov. Neodymium biosorption from acidic solutions in batch system // Process Biochem. 2000. № 36. Р. 441-444.

[24] C. Xiong, C. Xinyi. Enhanced adsorption behavior of Nd (III) onto D113-III resin from aqueous solution // J. Rare Earths. 2011. № 29. Р. 979-985.

[25] G.Z.K.I. Anastopoulos. Citrus Residues as Super-Adsorbents, in: D. Simmons (Ed.), Citrus Fruits: Production, Consumption and Health Benefits // Nova Science Publishers, USA. 2016. Р. 119-134.

[26] Y. Zhu, Y. Zheng, A. Wang. Preparation of granular hydrogel composite by the redox couple for efficient and fast adsorption of La (III) and Ce (III) // J. Environ. Chem. Eng. 2015. № 3. Р. 1416-1425.

[27] S. Xiaoqi, L. Huimin, S.M. Mahurin, L. Rui, H. Xisen, D. Sheng. Adsorption of rare earth ions using carbonized polydopamine nano carbon shells // J. Rare Earths. 2016. № 34. Р. 77-82.

[28] I. Liatsou, M. Efstathiou, I. Pashalidis. Adsorption of trivalent lanthanides by marine sediments // J. Radioanal. Nucl. Chem. 2015. № 304. Р. 41-45.

[29] E. Delrish, A. Khanchi, M. Outokesh, A. Tayyebi. Study on the adsorption of samarium and gadolinium ions by a biopolymer microcapsules containing DEHPA/TOPO extract // J. Appl. Chem. Res. 2014. № 8. Р. 61-69.

[30] N. Das, D. Das. Recovery of rare earth metals through biosorption: an overview // J. Rare Earths. 013. № 31. Р. 933-943.

[31] I. Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum // J. Am. Chem. Soc. 1918. № 40. Р. 1361-1403.

[32] H. Freundlich. Over the adsorption in solution // J. Phys. Chem. 1906. № 57. Р. 385-470.

[33] S. Lagergren. About the theory of so-called adsorption of soluble substances // Handlingar. 1898. № 24. Р. 1-39.

[34] G. Blanchard, M. Maunaye, G. Martin. Removal of heavy metals from waters by means of natural zeolites // Water Res. 1984. № 18. Р. 1501-1507.

[35] Y.-S. Ho, G. McKay. Pseudo-second order model for sorption processes // Process Biochem. 1999. № 34. Р. 451-465.

[36] K. Bharathi, S. Ramesh. Removal of dyes using agricultural waste as low-cost adsorbents: a review // Appl Water Sci. 2013. № 3. Р. 773-790.

[37] S. Rangabhashiyam, N. Anu, M.G. Nandagopal, N. Selvaraju. Relevance of isotherm models in biosorption of pollutants by agricultural byproducts // J. Environ. Chem. Eng. 2014. № 2. Р. 398-414.

[38] J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati, S. Ismadji. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies // J. Hazard. Mater. 2009. № 162. Р. 616-645.

[39] D. Park, Y.-S. Yun, J.M. Park. The past, present, and future trends of biosorption // Biotechnol. Bioprocess Eng. 2010. № 15. Р. 86-102.

[40] G. Crini, P.-M. Badot. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature // Prog. Polym. Sci. 2008. № 33. Р. 399-447.

[41] W.J.Weber, J.C. Morris. Kinetics of adsorption on carbon from solution // J. Sanit. Eng. Div. 1963. № 89. Р. 31-60.

[42] G. Boyd. The exchange adsorption of ions from aqueous solutions by organic zeolites // II. Kinetics1, J. Am. Chem. Soc. 1947. № 69. Р. 2836-2848.

[43] I. Anastopoulos, I. Massas, C. Ehaliotis. Composting improves biosorption of Pb2+ and Ni2+ by renewable lignocellulosic materials. Characteristics and mechanisms involved // Chem. Eng. J. 2013. № 231. Р. 245-254.

[44] N. Akhtar, M. Iqbal, S.I. Zafar, J. Iqbal. Biosorption characteristics of unicellular greenalga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr (III) // J. Environ. Sci. 2008. № 20. Р. 231-239.

[45] W.W. Ngah. Biosorption of copper ions from dilute aqueous solutions on base treated-rubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms // J. Environ. Sci. 2008. № 20. Р. 1168-1176.

[46] A.E. Ofomaja. Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust // Bioresour. Technol. 2008. № 99. Р. 5411-5417.

[47] Y. Zhang, W. Liu, M. Xu, F. Zheng, M. Zhao. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass // J. Hazard. Mater. 2010. № 178. Р. 1085-1093.

[48] L. Fang, C. Zhou, P. Cai,W. Chen, X. Rong, K. Dai,W. Liang, J.-D. Gu, Q. Huang. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis // J. Hazard. Mater. 2011. № 190. Р. 810-815.

[49] Y. Li. Adsorption kinetics and desorption of Cu (II) and Zn (II) from aqueous solution onto humic acid // J. Hazard. Mater. 2010. № 178. Р. 455-461.

[50] M.J. Ahmed. Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: review // J. Environ. Chem. Eng. 2016. № 4. Р. 89-99.

[51] M. Torab-Mostaedi, M. Asadollahzadeh. Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies // Res. Chem. Intermed. 2015. № 41. Р. 559-573.

[52] J.S.C. Varshini. Screening of biowaste materials for the sorption of cerium(III) from aqueous environment // Res. J. Pharm., Biol. Chem. Sci. 2014. № 5. Р. 402-408.

[53] J.S.C. Varshini, D. Das, N. Das, Recovery of cerium(III) from electronic industry effluent using novel biohydrogel: batch and column studies // Der Pharm. Lett. 2015. № 7. Р. 166-179.

[54] S.M.A. Koochaki-Mohammadpour. Adsorption isotherm, kinetic, thermodynamic, and desorption studies of lanthanum and dysprosium on oxidizedmultiwalled carbon nanotubes // J. Dispers. Sci. Technol. 2014. № 35. Р. 244-254.

[55] V. Anagnostopoulos. Sorption of europium bymalt spent rootlets, a lowcost biosorbent: effect of pH, kinetics and equilibriumstudies // J. Radioanal. Nucl. Chem. 2013. № 295. Р. 7-13.

[56] M. Prodromou, I. Pashalidis. Europium adsorption by non-treated and chemically mo-dified opuntia ficus indica cactus fibres in aqueous solutions // Desalin. Water Treat. 2016. № 57. Р. 5079-5088.

[57] E.I. Cadogan, C.-H. Lee. Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: synthesis and characterization // Int. Biodeterior. Biodegrad. 2014. № 95. Р. 232-240.

[58] T. Yao, Y. Xiao. Adsorption of Eu (III) on sulfonated graphene oxide: combined macroscopic and modeling techniques // J. Mol. Liq. 2016. № 215. Р. 443-448.

[59] L. Dolatyari. Adsorption characteristics of Eu (III) and Th (IV) ions onto modified mesoporous silica SBA-15 materials // J. Taiwan Inst. Chem. Eng. 2015. Р. 174-184 (DOI).

[60] Z. Guo. Fabrication of Fe3O4@ cyclodextrin magnetic composite for the high-efficient removal of Eu (III) // J. Mol. Liq. 2015. № 206. Р. 272-277.

[61] A. Naser, G.S. El-deen. Elaboration of impregnated composite for sorption of europiumand neodymium ions fromaqueous solutions // J. Ind. Eng. Chem. 2015. № 32. Р. 264-272.

[62] M. Butnariu, P. Negrea, L. Lupa. Remediation of rare earth element pollutants by sorption process using organic natural sorbents // Int. J. Environ. Res. Public Health. 2015. № 12. Р. 11278-11287.

[63] F. Granados-Correa, J. Vilchis-Granados. Adsorption behaviour of La (III) and Eu (III) ions from aqueous solutions by hydroxyapatite: kinetic, isotherm, and thermodynamic studies // J. Chem. 2013. Р. 1-9.

[64] J.S.C. Varshini, N. Das. Relevant approach to assess the performance of Biowastematerials for the recovery of lanthanum(III) fromaqueousmedium // Res. J. Pharm., Biol. Chem. Sci. 2014. № 5. Р. 88-94.

[65] D. Das. Recovery of lanthanum (III) from aqueous solution using biosorbents of plant and animal origin: batch and column studies // Miner. Eng. 2014. № 69. Р. 40-56.

[66] S.S. Hussien. Biosorption lanthanum pleurotus ostreatus basidiocarp // Int. J. Biomed. Res. 2014. № 2. Р. 26-36.

[67] Z. Birungi. The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: comparative analysis // Bioresour. Technol. 2014. № 160. Р. 43-51.

[68] X. Zheng. Design of mesoporous silica hybrid materials as sorbents for the selective recovery of rare earth metals // J. Mater. Chem. A. 2015. № 3. Р. 10327-10335.

[69] F.Wang, J. Zhao, X.Wei, F. Huo,W. Li, Q. Hu, H. Liu. Adsorption of rare earths (III) by calcium alginate–poly glutamic acid hybrid gels // J. Chem. Technol. Biotechnol. 2014. № 89. Р. 969-977.

[70] C. Gok. Neodymium and samarium recovery by magnetic nano-hydroxyapatite // J. Radioanal. Nucl. Chem. 2014. № 301. Р. 641-651.

[71] L. Hadjittofi, S. Charalambous, I. Pashalidis. Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres // J. Rare Earths. 2016. № 34. Р. 99-104.

[72] K. Vijayaraghavan. Biosorption of lanthanide (praseodymium) using Ulva lactuca: mechanistic study and application of two, three, four and five parameter isotherm models // J. Environ. Biotechnol. Res. 2015. № 1. Р. 10-17.

[73] K. Vijayaraghavan. Entrapment of brown seaweeds (Turbinaria conoides and Sargassum wightii) in polysulfone matrices for the removal of praseodymium ions from aqueous solutions // J. Rare Earths. 2015. № 33. Р. 1196-1203.

[74] C.J.S. Varshini, D. Das, N. Das. Optimization of parameters for praseodymium(III) biosorption onto biowastematerials using response surfacemethodology: equilibrium, kinetic and regeneration studies // Ecol. Eng. 2015. № 81. Р. 321-327.

[75] J. Ma, Z.Wang, Y. Shi, Q. Li. Synthesis and characterization of lysine-modified SBA-15 and its selective adsorption of scandium from a solution of rare earth elements // RSC Adv. 2014. № 4. Р. 41597-41604.

[76] S.S. Hussien, O.A. Desouky. Biosorption studies on yttrium using low cost pretreated biomass of Pleurotus ostreatus, 4th International Conference on Radiation Sciences and Applications // ESRA, Taba, Egypt. 2014. Р. 139-150.

[77] J. Roosen. Shaping of alginate–silica hybrid materials into microspheres through vibrating-nozzle technology and their use for the recovery of neodymium from aqueous solutions // Ind. Eng. Chem. Res. 2015. № 54. Р. 12836-12846.

[78] E. Borai. Template polymerization synthesis of hydrogel and silica composite for sorption of some rare earth elements // J. Colloid Interface Sci. 2015. № 456. Р. 228-240.

[79] R.C. Bansal,M. Goyal. Activated Carbon Adsorption, CRC press, Taylor & Francis // Boca Raton, FL, USA. 2005.

[80] I. Anastopoulos. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? // J. Mol. Liq. 2016. № 218. Р. 174-185.

[81] S.K. Sharma. Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications // Scrivener-Wiley, USA. 2015.

[82] P. Saha, S. Chowdhury, in: M. Tadashi (Ed.). Insight into Adsorption Thermodynamics // InTech, China. 2011. Р. 349-365.

[83] A. Babarinde, J.O. Babalola, J. Adegoke. Biosorption of Ni (II), Cr (III), and Co (II) from solutions using Acalypha hispida leaf: kinetics, equilibrium, and thermodynamics // J. Chem. 2013.

[84] I. Anastopoulos, G.Z. Kyzas. Agricultural peels for dye adsorption: a review of recent literature // J. Mol. Liq. 2014. № 200. Р. 381-389.

[85] I. Anastopoulos, G.Z. Kyzas. Composts as biosorbents for decontamination of various pollutants: a review // Water Air Soil Pollut. 2015. № 226. Р. 1-16.

[86] I. Anastopoulos, I. Massas, C. Ehaliotis. Use of residues and by-products of the oliveoil production chain for the removal of pollutants from environmental media: a review of batch biosorption approaches // J. Environ. Sci. Health A. 2015. № 50. Р. 677-718.

Published

2021-05-03