IDENTIFICATION OF NEW ANTHRAQUINONE DERIVATIVES WITH ANTIBACTERIAL ACTIVITY
Keywords:
medicinal plants, natural sources, derivatives of 9,10-anthraquinone, antimicrobial activityAbstract
Natural compounds serve as powerful agents against pathogenic bacteria and continue to be the basis for the discovery of new antibiotics. 21st century natural product research is ideal to attract new drug candidates to the clinic. Problems of treatment and prevention of infectious diseases, due to the diversity of biological forms of pathogens, the constant emergence of multi-resistant forms, the emergence of new types of dangerous pathogens, determine the urgency of the problem of creating new antimicrobial agents. The analytical review presents material on the antimicrobial activity of natural anthraquinone derivatives. Data analysis shows that anthraquinone derivatives can serve as promising sources of antimicrobial agents.
References
[1] World Health Organization (WHO) Global Action Plan on Antimicrobial Resistance (2015) http://www.who.int/antimicrobial-resistance/globalaction-plan/en/
[2] Antimicrobial resistance surveillance in Europe 2012. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). European Centre for Disease Prevention and Control. – Introduced 2013, Stockholm, 208 p. DOI: 10.2900/93403I.A
[3] Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (2016) (Review on Antimicrobial Resistance) http: www.amr-review. org
[4] ECDC/EFSA/EMA/SCENIHR. 2009. Joint Opinion on antimicrobial resistance (AMR) focused on zoonotic infections. EFSA Journal 2009; 7(11):1372 Question No. EFSA-Q-2008-781. doi:10.2903/j.efsa.2009.1372 http://www.ema.europa.eu/docs/en_GB/document_library/Other/2009/11/WC500015452.p df.
[5] ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority) and EMA (European Medicines Agency). ECDC/EFSA/EMA first joint report on the
ntegrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and foodproducing animals. Stockholm/Parma/London: ECDC/EFSA/EMA, 2015. EFSA Journal 2015;13(1):4006, 114 pp. doi:10.2903/j.efsa.2015.4006
[6] EMA/ESVAC. 2014. European Medicines Agency. Sales of veterinary antimicrobial agents in 26 EU/EEA countries in 2012 (EMA/333921/2014). In http://www.ema.europa.eu/docs/en_GB/document_library/Report/2014/10/WC500175671. pdf.
[7] Official Journal of the European Union. 2013. Commission Implementing Decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria (2013/652/EU). In
http://eur-lex.europa.eu/legalcontent/EN/TXT/?qid=1416491686645&uri=CELEX:32013D0652.
[8] Antimicrobial resistance surveillance in Europe 2012. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). European Centre for Disease Prevention and Control.: – Introduced 2013, Stockholm, 208 p. DOI: 10.2900/93403
[9] Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. World Health Organization; 2017.
[10] Tacconelli Е., Carrara E., Savoldi A. , Harbarth S. , Mendelson M. , Monnet D.L, Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y , et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. // Lancet Infect Dis, 18 (2018), Р. 318-327.
[11] Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. World Health Organization. 2017. P. 1-7 . http: www.who.int
[12] ECDC. European Antimicrobial Resistance Surveillance Network (EARSNet) Interactive Database. 2014.
[13] Dodds D.R. Antibiotic resistance: A current epilogue.// Biochemical Pharmacology. – 2017. – Vol. 134. – P. 139-146.
[14] Dietvorst J., Vilaplana L., Uria N., Marco M-P., Muñoz-Berbel X. Current and near-future technologies for antibiotic susceptibility testing and resistant bacteria detection. // TrAC Trends in Analytical Chemistry. – 2020. – Vol. 127. – 11589.1
[15] Center for Disease Dynamics, Economics & Policy. State of the world’s antibiotics 2015. 2015. http://cddep.org/sites/default/files/ swa_2015_final.pdf (accessed May 17, 2017).
[16] WHO. Antimicrobial resistance: global report on surveillance 2014. Geneva: World Health Organization, 2014. http://apps.who.int/iris/ bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1 (accessed May 17, 2017).
[17] Luepke K.H., Suda K.J., Boucher H., et al. Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications // Pharmacother. – 2017. – Vol. 37. – P. 71-84.
[18] Wright G.D. Opportunities for natural products in 21st century antibiotic discovery // Natural Product Reports. – 2017. – Vol. 34(7). – P. 694-701.
[19] Зубов П.В., Новикова В.В. Разработка новых антибактериальных препаратов-проблемы и перспективы // Современные проблемы науки и образования. – 2015. – № 5 [https://science-education.ru/pdf/2015/5/649.pdf].
[20] Butler M.S., Blaskovich M.A., Cooper M.A. Antibiotics in the clinical pipeline in 2013 // The Journal of Antibiotics. – 2013. – P. 571-591.
[21] https://www.fda.gov/
[22] Pew Charitable Trust: Antibiotics Currently in Global Clinical Development. 2019 pewtrusts.org/antibiotic-pipeline Updated list of current antibiotic pipeline in development.
[23] Dougan G., Dowson C., Overington J. The discovery challenge of drug-resistant infections: progress and focusing resources. Drug Discov Today 2019, 24:452-461 Summary report of the Next Generation Antibiotic Discovery symposium that raised awareness, highlighted requirements and promoted collaboration and action in antibiotic discovery.
[24] Saleem M., Nazir M., Ali M.S., Hussain H., Lee Y.S., Riaz N., Jabbar A., Antimicrobial natural products: an update on future antibiotic drug candidates // Nat Prod Rep. – 2010. – Vol. 27. – P.238-254.
[25] Silva L.N., Zimmer K.R., Macedo A.J., Trentin D.S. Plant natural products targeting bacterial virulence factors // Chem Rev. – 2016. – Vol. 116. – P. 9162-236.
[26] Genilloud O. Natural products discovery and potential for new antibiotics // Current Opinion in Microbiology. – 2019. – Vol. 51. – P. 81-87.
[27] Silver L.L. Are natural products still the best source for antibacterial discovery? The bacterial entry factor // Expert Opin Drug Discov. – 2008. – Vol. 3. – P. 487-500.
[28] Wright G.D. Something old, something new: revisiting natural products in antibiotic drug discovery // Can. J. Microbiol. – 2014. – Vol. 60. – P. 147-154.
[29] Lewis K. New approaches to antimicrobial discovery // Biochem. Pharmacol. – 2017. – Vol. 134. – P. 87-98.
[30] Xi Y., Sullivan G.A, Jackson A.L., Zhou G.H., Sebranek J.G. Use of natural antimicrobials to improve the control of Listeria monocytogenes in a cured cooked meat model system // Meat Sci. – 2011. – Vol. 88. – Р. 503-511, 10.1016/j.meatsci.2011.01.036
[31] Guil-Guerrero J.L., Ramos L., Moreno C., Zúñiga-Paredes J.C., Carlosama-Yepez M., Ruales P.Antimicrobial activity of plant-food by-products: a review focusing on the tropics Livest. Sci. – 2016. – Vol. 189. – P. 32-49
[32] Gyawali R., Ibrahim S.A. Natural products as antimicrobial agents // Food Contr. – 2014. – Vol. 46. – P. 412-429.
[34] Wagner H. Synergy research: approaching a new generation of phytopharmaceuticals // Fitoterapia. – 2011. – Vol. 82. – P. 34-37.
[35] Zacchino S.A., Butassi E., Cordisco E., Svetaz L.A. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms // Phytomedicine. – 2017. – Vol. 37. – P. 14-26.
[36] Zacchino S.A., Butassi E., Di Liberto M., Raimondi M., Postigo A., Sortino M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs // Phytomedicine. – 2017. – Vol. 37. – P. 27-48.
[37] Monciardini P., Iorio M., Maffioli S., Sosio M., Donadio S. Discovering new bioactive molecules from microbial sources // Microb. Biotechnol. – 2014. – Vol. 7. - P. 209-220.
[38] Durand G.A., Raoult D., Dubourg G. Antibiotic discovery: history, methods and per-spectives // International Journal of Antimicrobial Agents. – 2019. – Vol. 53, Issue 4. – P. 371-382.
[39] Rustam Aminov History of antimicrobial drug discovery: Major classes and health impact // Biochemical Pharmacology. – 2017. – Vol. 133. – P. 4-19.
[40] Livermore D.M. Discovery research: the scientific challenge of finding new antibiotics // Journal of Antimicrobial Chemotherapy. – 2011. – Vol. 66, Issue 9. – P. 1941-1944.
[41] Demain A.L. Importance of microbial natural products and the need to revitalize their discovery // J. Ind. Microbiol. Biotechnol. – 2014. – Vol. 41. – P. 185-201.
[42] Brown D.G., Lister T., May-Dracka T.L. New natural products as new leads for antibacterial drug discovery // Bioorganic and Medicinal Chemistry Letters. – 2014. – Vol. 24, Issue 2. – P. 413-418.
[43] Srikanth Gatadi, Jitendra Gour, Srinivas Nanduri Natural product derived promising anti-MRSA drug leads: A review // Bioorganic & Medicinal Chemistry. – 2019. – Vol 27, Issue 17. – P. 3760-3774
[44] Nouha Bakaraki In: Turan Drug Discovery Targeting Drug-Resistant Bacteria. – Chapter 8: New approaches to antibacterial drug discovery / Edited by: Prashant Kesharwani, Sidharth Chopra and Arunava Dasgupta. – Academic Press, 2020. – P. 223-248.
[45] Fischbach M.A., Walsh C.T. Antibiotics for emerging pathogens // Science. – 2009. – Vol. 325. – P. 1089-1093.
[46] Zohra T., Ovais M., Khalil A.T., Qasim M., Ayaz M., Shinwari Z.K., Ahmad S., Zahoor M. Bio-guided profiling and HPLC-DAD finger printing of Atriplex lasiantha Boiss // BMC Complement Altern. Med. – 2019. – Vol. 19. – P. 4
[47] Khan S.U., Khan A.-u., Shah A.-u.-H.A., Shah S.M., Hussain S., Ayaz M., Ayaz S. Heavy metals content, phytochemical composition, antimicrobial and insecticidal evaluation of Elaeagnus angustifolia // Toxicol. Ind. Health. – 2016. – Vol. 32. – P. 154-161.
[48] Sadiq A., Ahmad S., Ali R., Ahmad F., Ahmad S., Zeb A., Ayaz M., Ullah F., Siddi- que A.N. Antibacterial and antifungal potentials of the solvents extracts from Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum // BMC Complement Altern. Med. – 2016. – Vol. 16. – P. 478-181.
[49] Mickymaray S., Saleh Al Aboody M., Rath P.K., Annamalai P., Nooruddin T. Screening and antibacterial efficacy of selected Indian medicinal plants // Asian Pacific Journal of Tropical Biomedicine. – 2016. – Vol. 6, Issue 3. – P. 185-191.
[50] Sharma A., Flores-Vallejo R.C., Cardoso-Taketa A., Villarreal M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine // Journal of Ethnopharmacology. – 2017. – Vol. 208. – P. 264-329.
[51] Vambe M., Aremu A.O., Chukwujekwu J.C., Finnie J.F., Van Staden J. Antibacterial screening, synergy studies and phenolic content of seven South African medicinal plants against drug-sensitive and resistant microbial strains // South African Journal of Botany. – 2018. – Vol. 114. – P. 250-259.
[52] Nair J.J., Wilhelm A., Bonnet S.L., Staden J. Antibacterial constituents of the plant family Amaryllidaceae // Bioorganic and Medicinal Chemistry Letters. – 2017. – Vol. 27, Issue 22. – P. 4943-4951.
[53] Gutiérrez-del-Río I., Fernández J., Lombó F. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols // International Journal of Antimicrobial Agents. – 2018. – Vol. 52, Issue 3. – P. 309-315.
[54] Barbieri R., Coppo E., Marchese A., Daglia M., Sobarzo-Sánchez E., Nabavif S.F., Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity // Microbiological Research. – 2017. – Vol. 196. – P. 44-68.
[55] Quan D., Nagalingam G., Payne R., Triccas J.A. New tuberculosis drug leads from naturally occurring compounds // International Journal of Infectious Diseases. – 2017. – Vol. 56. – P. 212-220.
[56] Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow // Molecular Aspects of medicine. – 2006. – Vol. 27, Issue 1. – P. 1-93.
[57] Sweidan A., Chollet-Krugler M., Sauvager A., Chokr A., Bonnaure-Mallet M., Weghe P., Tomasi S., Bousarghin L. Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis // Fitoterapia. – 2017. – Vol. 121. – P. 164-169.
[58] Nalini S., Richard D.S., Riyaz S.U.M., Kavitha G., Inbakandan D. Antibacterial macro molecules from marine organisms // International Journal of Biological Macromolecules. – 2018. – Vol. 115. – P. 696-710.
[59] Barbosa F., Pinto E., Kijjoa A., Pinto M., Sousa E. Targeting antimicrobial drug resistance with marine natural products // International Journal of Antimicrobial Agents. – 2020. – Vol. 56, Issue 1. – 106005.
[60] Tripathi V.C., Satish S., Horam S., Raj S., Agneylal, Arockiaraj J., Pasupuleti M., Dikshit D.K. Natural products from polar organisms: Structural diversity, bioactivities and potential pharmaceutical applications // Polar Science. – 2018. – Vol. 18. – P. 147-166.
[61] Lee S., Siddiqui R., Khan N.A. Animals living in polluted environments are potential source of antimicrobials against infectious agents // Pathog. Glob. Health. – 2012. – 106. – P. 218-223.
[62] Ovais M., Ahmad I., Khalil A.T., Mukherjee S., Javed R., Ayaz M., Raza A., Shinwari Z.K. Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects // Appl. Microbiol. Biotechnol. – 2018. – P. 1-14.
[63] Ovais M., Khalil A.T., Islam N.U., Ahmad I., Ayaz M., Saravanan M., Shinwari Z.K., Mukherjee S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles // Appl. Microbiol. Biotechnol. – 2018. – P. 1-16.
[64] Letzel A.-C., Pidot S.J., Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world // Nat. Prod. Rep. – 2013. - Vol. 30. – P. 392-428.
[65] Ayaz M., Sadiq A., Wadood A., Junaid M., Ullah F., Khan N.Z. Cytotoxicity and molecular docking studies on phytosterols isolated from Polygonum hydropiper L. // Steroids. – 2019. – 141. – P. 30-35
[66] Ovais M., Zia N., Ahmad I., Khalil A.T., Raza A., Ayaz M., Sadiq A., Ullah F., Shinwari Z.K. Phyto-therapeutic and nanomedicinal approach to cure alzheimer disease: present status and future opportunities // Front. Aging Neurosci. – 2018. – Vol. 10. – P. 284-289.
[67] Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs Over the Years from 1981 to 2010 // Journal of Natural Products. – 2012. – Vol. 75. – P. 311-335.
[68] Gibbons S. Phytochemicals for bacterial resistance – strengths, weaknesses and opportunities // Planta Med. – 2008. – Vol. 74. – P. 594-602.
[69] Santhosh R.S., Suriyanarayanan B. Plants: A source for new antimycobacterial drugs // Planta Medica. – 2014. – Vol. 80. – P. 9-21.
[70] Харламова Т.В. Природные производные 9,10-антрахинона и их антимикробные свойства // Химический журнал Казахстана. – 2018. – № 4. – С. 205-235.
[71] Thomson R.H. Naturally Occuring Quinones III. – New York: Chapman & Hall, 1987. – P. 345-524.
[72] Duval J., Pecher V., Poujol M., Lesellier E. Research advances for the extraction, analysis and uses of anthraquinones: A review // Industrial Crops and Products. – 2016. – Vol. 94. – P. 812-833.
[73] Singh R., Chauhan S.M. 9,10-Anthraquinones, other biologically active compounds from the genus Rubia //Chemistry biodiversity. – 2004. – Vol. 1. – P. 1241-1264.
[74] Zhang J., Xin H., Xu Y., Shen Y., He Y-Q., Hsien-Yeh, Lin B., Song H., Juan-Liu, Yang H. Qin L., Zhang Q., Du J. Morinda officinalis How. – A comprehensive review of traditional uses, phytochemistry and pharmacology // Journal of Ethnopharmacology. – 2018. – Vol. 213. – P. 230-255.
[75] Baruah A., Bordoloi M., Baruah P.H.D. Aloe vera: A multipurpose industrial crop // Industrial Crops and Products. – 2016. – Vol. 94. – P. 951-963.
[76] Akaberi M., Sobhani Z., Javadi B., Sahebkar A., Emami S.A. Therapeutic effects of Aloe spp. in traditional and modern medicine: A review // Biomedicine and Pharmacotherapy. – 2016. – Vol. 84. – P. 759-772.
[77] Radha M.H., Laxmipriya N.P. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review // Journal of Traditional and Complementary Medicine. – 2015. – Vol. 5, Issue 1. – P. 21-26.
[78] Yadav J.P., Arya V., Yadav S., Panghal M., Kumar S., Dhankhar S. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile // Fitoterapia. – 2010. – Vol. 81, Issue 4. – P. 223-230.
[79] Kosalec I., Kremer D., Locatelli M., Epifano F., Zovko Končić M. Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. fallax, R. intermedia and R. pumila // Food Chemistry. – 2013. – Vol. 136, Issue 2. – P. 335-341.
[80] Zargar B.A., Masoodi M.H., Ahmed B., Ganie S.A. Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn // Food Chemistry. – 2011. – Vol. 128, Issue 3. – P. 585-589.
[81] Rokaya M.B., Münzbergová Z., Timsina B., Bhattarai K.R. Rheum australe D. Don: A review of its botany, ethnobotany, phytochemistry and pharmacology // Journal of Ethnophar-macology. – 2012. – Vol. 141, Issue 3. – P. 761-774.
[82] Zheng Q., Wu H., Guo J., Nan H., Chen S., Yang J., Xu X. Review of Rhubarbs: Chemistry and Pharmacology // Chinese Herbal Medicines. – 2013. – Vol. 5, Issue 1. – P. 9-32.
[83] Vasas A., Orbán-Gyapai O., Hohmann J. The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology // Journal of Ethnopharmacology. – 2015. – Vol. 175. – P. 198-228.
[84] Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. // Journal of Ethnopharmacology. – 2010. – Vol. 131, Issue 3. – P. 511-521.
[85] Malmir M., Ferreira E., Serrano R., Gomes E.T., Canic M., Silva O. In vitro anti-Neisseria gonorrhoeae activity of Senna podocarpa root extracts // Industrial Crops and Products. – 2015. – Vol. 76. – P. 467-471 [doi:10.1016/j.indcrop.2015.07.02].
[86] Palombo E.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases // Evid Based Complement Alternat Med. – 2011. – 680354.
[87] Liao J, Zhao L, Yoshioka M, Hinode D, Grenier D. Effects of Japanese traditional herbal medicines (Kampo) on growth and virulence properties of Porphyromonas gingivalis and viability of oral epithelial cells // Pharm Biol. –2013. – Vol. 51. – P. 1538-1544.
[88] Jabrane Azelmat, Jade Fournier Larente, Daniel Grenier The anthraquinone rhein exhibits synergistic antibacterial activity in association with metronidazole or natural compounds and attenuates virulence gene expression in Porphyromonas gingivalis // Archives of Oral Biology. – 2015. –Vol. 60, Issue 2. – P. 342-346.
[89] Chukwujekwu J.C., Coombes P.H., Mulholland D.A., Staden J.Van. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis // South African Journal of Botany. – 2006. – Vol. 72. – P. 295-297.
[90] Ayo R.G., Amupitan J.O., Zhao Y. Cytotoxicity and antimicrobial studies of 1,6,8- trihydroxy-3-methyl-anthraquinone (emodin) isolated from the leaves of Cassia nigricans Vahl // African Journal of Agriculture. – 2013. – Vol. 1. – P. 8-10.
[91] Liu M., Peng W., Qin R., Yan Z., Cen Y. The direct anti-MRSA effect of emodin via dama-ging cell membrane //Applied Microbiology and Biotechnology. – 2015. – Vol. 99. – P. 7699-7709.
[92] Omosa L.K., Midiwo J.O., Mbaveng A.T., Tankeo S.B., Seukep J.A., Voukeng I.K. Antibacterial activities and structure–activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes // SpringerPlus. – 2016. – Vol. 5. – P. 901-916.
[93] Kemegne G.A., Mkounga P., Ngang J.J.E., Kamdem S.L.S., Nkengfack A.E. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii // BMC Microbiology. – 2017. – Vol. 17 [doi:10.1186/s12866-017-0954-1].
[94] Omosa L.K., Midiwo J.O., Mbaveng A.T., Tankeo S.B., Seukep J.A., Voukeng I.K., Dzotam J.K., Isemeki J., Derese S., Omolle R.A., Efferth T., Kuete V. Antibacterial activities and structure – activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes // SpringerPlus. – 2016. – Vol. 5. – P. 901-906.
[95] Hamed M.M., Refahy L.A., Abdel-aziz M.S. Evaluation of Antimicrobial Activity of Some Compounds Isolated from Rhamnus cathartica L. // Oriental journal of Chemistry. – 2015. – Vol. 31. – P.1133-1140.
[96] Lee J., Kim Y., Ryu S.Y., Lee J. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus // Scientific Reports. – 2016. – Vol. 14.
[97] Wang W., Chen R., Luo Z., Wang W., Chen J. Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor // Nat. Prod. Res. – 2017. – Vol. 33(21). – P. 558-563.
[98] He K.Y., Zhang C., Duan Y.R., Huang G.L., Yang C.Y., Lu X.R., Zheng C.J., Chen G.Y. New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126 // J. Antibiot. – 2017. –Vol. 70. – P. 823-827.
[99] Jiang X., Zhang Q., Zhu Y., Nie F., Wu Z., Yang C., Zhang L., Tian X., Zhang C. Isolation, structure elucidation and biosynthesis of benzo[b]fluorene nenestatin A from deep-sea derived Micromonospora echinospora SCSIO 04089 // Tetrahedron. – 2017. – Vol. 73. – P. 3585-3590.
[100] Lü Y., Shao M., Wang Y., Qian S., Wang M., Wang Y., Li X., Bao Y., Deng C., Yue C., Liu D., Liu N., Liu M., Huang Y., Chen Z., Hu Y. Zunyimycins B and C, new chloroanthra-benzoxocinones antibiotics against methicillin-resistant Staphylococcus aureus and Enterococci from Streptomyces sp. FJS31-2 // Molecules. – 2017.– Vol. 22. – P. 251.
[101] Fukumoto A., Kim Y.P., Matsumoto A., Takahashi1 Y., Suzuki M., Onodera H., Tomoda H., Matsui H., Hanaki H., Iwatsuki M., Ōmura S., Shiomi K. Naphthacemycins, novel circumventors of β-lactam resistance in MRSA, produced by Streptomyces sp. KB-3346-5. I. The taxonomy of the producing strain, and the fermentation, isolation and antibacterial activities // J. Antibiot. – 2017. – Vol. 70 – P. 562-567.
[102] Feng Z., Kallifidas D., Brady S.F. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites // Proc. Natl Acad. USA, – 2011. – Vol. 2108. – P. 12629-12634.
[103] Qin Z., Munnoch J.T., Devine R., Holmes N.A., Seipke R.F., Wilkinson K.A., Wilkinson B., Hutchings M.I. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants // Chem. Sci. – 2017. – Vol. 8. – P. 3218-3227.
[104] Bo S.T., Xu Z.F., Yang L., Cheng P., Tan R.X., Jiao R.H., Ge H.M. Structureand biosynthesis of mayamycin B, a new polyketide with antibacterial activity from Streptomyce ssp.120454 // J. Antibiot. – 2018. – Vol. 71. – P. 601-605.
[105] Song Y., Liu G., Li J., Huang H., Zhang X., Zhang H., Ju J. Cytotoxic and Antibacterial Angucycline- and Prodigiosin-Analogues from the Deep-Sea Derived Streptomyces sp. SCSIO 11594 // Mar. Drugs. – 2015. – Vol. 13. – P. 1304-1316.
[106] Mfonku N.A., Mbah J.A., Kodjio N., Gatsing D., Zhan J. Isolation and selective glycosylation of antisalmonellal anthraquinones from the stem bark of Morinda lucida Benth. (Rubiaceae) // Phytochemistry Letters. – 2020. – Vol. 37. – P. 80-84.
[107] Özkayaa F.C., Ebrahima W., El-Neketic M., Tanrıkulb T.T., Kalscheuera R., Müllerd W.E.G., Guo Z., Zou K., Liu Z., Proksch P. Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach // Fitoterapia. – 2018. – Vol. 131. – P. 9-14.
[108] Yang S.Q., Li X.M., Xu G.M., Li X., An C.Y., Wang B.G. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy // J. Antibiot. – 2018. – Vol. 71. – P. 778-784.
[109] Iorio M, Cruz J, Simone M, Bernasconi A, Brunati C, Sosio M, Donadio S, Maffioli SI. Antibacterial paramagnetic quinones from Actinoallomurus // J Nat Prod. – 2017. – Vol. 80. – P. 819-827.
[110] Bauermeister A., Calil F.A., Pinto F.C.L., Medeiros T.C.T., Almeida L.C., Silva L.J., Melo I.S., Zucchi T.D., Costa-Lotufo L.V., Moraes .LA.B. Pradimicin-IRD from Amycolatopsis sp. IRD-009 and its antimicrobial and cytotoxic activities // Nat. Prod. Res. – 2019. – Vol. 33. – P. 1713-1720.
[111] Chen H., Du K., Sun Y.J., Hao Z.Y., Zhang Y.L., Bai J., Wang Q.H., Hu H.Y., Feng W.S. Solanrubiellin A, a hydroanthraquinone dimer with antibacterial and cytotoxic activity from Solanum lyratum // Nat. Prod. Res. – 2019 [doi.org/10.1080/14786419.2018.1553173].
[112] Wang M., Kornsakulkarn J., Srichomthong K., Feng T., Liu J.K., Isaka M., Thongpanchang C. Antimicrobial anthraquinones from cultures of the ant pathogenic fungus Cordyceps morakotii BCC 56811 // J. Antibiot. – 2019. – Vol. 72. – P. 141-147.
[113] Li J.L., Jiang X., Liu X., He C., Di Y., Lu S., Huang H., Lin B., Wang D., Fan B. Antibacterial anthraquinone dimers from marine derived fungus Aspergillus sp. // Fitoterapia. – 2019. – Vol. 133. – P. 1-4.
[114] Monciardini P., Bernasconi A., Iorio M., Brunati C., Sosio M., Campochiaro L., Landini P., Maffioli S.I., Donadio S. Antibacterial aromatic polyketides incorporating the unusual amino acid enduracididine // J. Nat. Prod. – 2019. – Vol. 82. – P. 35-44.
[115] Lu C., Wang H., Lv W., Xu P., Zhu J., Xie J., Liu B., Lou Z. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila // Fisheries Science. – 2011. – Vol. 77, Issue 3. – P. 375-384.
[116] Abudarwish SM, Ateyyat M, Salt A. The Pharmacological and Pesticidal Actions of Naturally Occurring 1,8-dihydroxyanthraquinones Derivatives // Helicobacter. – 2008. – Vol. 4. – P. 495-505.
[117] Ghoneim M.M., Ma G., El-Hela A.A., Mohammad A. E.I., Kottob S., El-Ghaly S. Biologically active secondary metabolites from Asphodelus microcarpus // Natural Product Communication. – 2013. – Vol. 8. – P. 1117-1119.