STUDY OF PROPERTIES OF COMPOSITIONS BASED ON COPOLIIMIDES WITH ADDITIVES OF ALKYLATED MONTMORILLONITE

Authors

  • M. B. Umerzakova A.B. Bekturov Institute of chemical sciences
  • V. D. Kravtsova A.B. Bekturov Institute of chemical sciences
  • R. B. Sarieva A.B. Bekturov Institute of chemical sciences

Keywords:

copolyimide, montmorillonite, polyethylene glycol, composite film, properties

Abstract

The methods of thermogravimetric analysis and differential scanning calorimetryare used to determine the main thermal and mechanical properties of composite films based on arylalicyclic copolyimides with the addition of alcylated montmorillonite modified with polyethylene glycol. Composite materials based on the studied modified copolyimides in comparison with the initial copolyimides have improved strength properties by 4–25oС and 5–31 MPa, while the elasticity of the material does not deteriorate. It was found that the best values of thermal stability (Ts.d. = 430oC) and tensile strength (168 MPA) are possessed by a copolyimide composite film with an initial ratio of alicyclic and aromatic dianhydrides of 90:10 mol%, respectively, and the maximum content of montmorillonite and polyethylene glycol (7 wt%). The electrical parameters of the compositions were studied. It was found that as AMMs are added to the copolyimide composition, they change insignificantly.

References

[1] Novakov I.A., Orlinson B.S., Brunilyn R.B., Potaenkova E.A. Rastvorimye poliimidy i sоpoliimidy s povyshennoyi gidroliticheskoyi ustoyichivostyu na osnove [(2-amino)- i (2-ami-nometil) bitsiklo[2.2.1]gepten-3-il]anilinov // Vysokomol. soed. Ser. A, B. 2010. Vol. 52, No. 10. P. 1861-1865.

[2] Cheng C., Cheng H. Effect of reactive channel functional groups and nanocomposite of nanoscale mesoporouse silica on properties on properties of polyimide // Macromolecules. 2006. Vol. 39, No. 22. P. 7583-7590.

[3] Trofimov A.E., Stepanov I.S., Tenkovets A.V. Novyy podkhod k sintezu organo-neorga-nicheskikh nanokompozitov // Zhurn. prikl. khimii. 2007. Vol. 80, No. 4. P. 627-631.

[4] Sokolova Yu.A., Shubanov S.M., Kadyrin L.B., Kalugina E.V. Polimernye nanokompozity. Struktura. Svoyistva // Plast. massy. 2009. No. 3. P. 18-23.

[5] Umerzakova M.B., Iskakov R.M., Kravtsova V.D., Sarieva R.B., Ismailova A.B., Nikolaeva E.S. Problemy i puti cozdaniya litievykh istochnikov toka. // Khim. Zhurn. Kazakhstana. 2014. No. 1. P. 51-72.

[6] Kravtsova V.D., Umerzakova M.B., Iskakov R.M., Sarieva R.B. Poluchenie i issledovanie poristykh poliimidnykh plenok alitsiklicheskoyi i arilalitsiklicheskoyi syruktury // Fundamentalnye issledovaniya. 2017. No. 7. P. 39-43.

[7] Zhubanov B.A., Umerzakova M.B., Kravtsova V.D., Iskakov R.M., Sarieva R.B. Polimer-nye kompozitsii na osnove alitsiklicheskogo poliimida i poliethilenglikolya // Zhurn. prikl. khimii. 2013. Vol. 86, No. 10. P. 1653-1658.

[8] Krutko E. T., Prokopchuk N.R. Perspektivnye puti sozdaniya novykh termostoyikikh materialov na osnove poliimidov // Khimiya i khimicheskaya tekhnologiya organicheskikh veshchestv, materialov i izdeleyi. Trudy BGTU. 2013. No. 4. P. 145-150.

[9] Reu Ioe, Liao Wen. Caofenzi cailiao kexue yugongcheng // J. Polym. Mater. Sci. Tehnol. 2005. Vol. 21, No. 3. P. 40-44.

[10] Mikitaev A.K., Kalazhanyan A.A., Lednev O.B., Mikitaev M.A., Davydov E.M. Nano-kompozitnye polimernye materialy na osnove organoglin s povyshennoyi ognestoyikostyu // Plast. massy. 2005. No. 4. P. 36-43.

[11] Rabek J. Eksperimentalnye methody v polimernoyi khimii. V 2 chastyakh. M.: Mir, 1983. Ch. 1. 382 p. Ch. 2. 479 p.

[12] Kratkaya khimicheskaya entsiklopediya. V 5 tomakh. M.: Sovetskaya entsiklopediya, 1961. Vol. 1. P. 968.

[13] Entsiklopediya polimerov. V 3 tomakh. M.: Sovetskaya entsiklopediya, 1974. Vol. 2. P. 431.

Published

2021-05-03