SYNTHESIS AND BIOLOGICAL PROPERTIES OF SOME α-AMINOPHOSPHONATES

Authors

  • A. B. Kaldybayeva Kazakh National Women's Teacher Training University
  • A. Ye. Malmakova A.B. Bekturov Institute of chemical sciences
  • V. K. Yu A.B. Bekturov Institute of chemical sciences
  • K. D. Praliyev A.B. Bekturov Institute of chemical sciences

Keywords:

synthesis, α-aminophosphonates, biological activity, three-component systems

Abstract

The article presents a literature review of the results of studies on the synthesis of certain α-aminophosphonates and their biological properties, and also discusses the basics of the synthesis of some α-aminophosphonates using the reactions of Kabachnik-Fields, Mannich, Michaelis-Becker, Arbuzov, Todd-Atherton and Pudovik. Almost all reactions were carried out using ternary systems.

References

[1] Hirschmann R., Smith, A.B., Taylor C.M., Benkovic P.A., Taylor S.D., Yager K.M., Sprengler P.A.,Benkovic S.J. Peptide synthesis catalyzed by an antibody containing a bindingsite for variable amino acids // Science. – 1994. – 265. – P. 234-237.

[2] Allen M.C., Fuhrer W., Tuck B., Wade R., Wood J.M. Renin inhibitors. Synthesis oftransition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond // J. Med. Chem. – 1989. – 32. – P. 1652-1661.

[3] Logusch E.W., Walker D.M., McDonald J.F., Leo G.C., Franz, J.E. Synthesis of α- and γ-alkyl-substituted phosphinothricins: Potent new inhibitors of glutamine synthetase // J.Org. Chem. – 1988. – 53. – P. 4069-4074.

[4] Giannousis P.P., Bartlett P.A. Phosphorus amino acid analogs as inhibitors of leucine-aminopeptidase // J. Med. Chem. – 1987. – 30. – P. 1603-1609.

[5] Emgenbroich M., Wulff G. A new enzyme model for enantioselectiveesterases based onmolecularly imprinted polymers // Chem. Eur. J. – 2003. – N 9. – P. 4106-4177.

[6] Senten K., Danie L., Var der Veken P., De Meester I., Lambeir A.M., Scharpe S., Haemers A., Augustyns K. Rapid parallel synthesis of dipeptide diphenylphosphonate esters as inhibitors of dipeptidyl peptidases // J. Comb. Chem. – 2003. – N 5. – P. 336-344.

[7] Stowasser B., Budt K.H., Li J.Q., Peyman A., Ruppert D. New hybrid transition state analoginhibitors of HIV protease with peripheric C2-symmetry // Tetrahedron Lett. – 1992. – N 33. – P. 6625-6628.

[8] Patel D.V., Rielly-Gauvin K., Ryono D.E. Preparation of peptidic α-hydroxyphosphonates a new class of transition state analog renin inhibitors // Tetrahedron Lett. – 1990. – N 31. – P. 5587-5590.

[9] Beers S.A. ,Schwender C.F., Loughney D.A., Malloy E., Demarest K., Jordan J. Phosphatas einhibitors-III. Benzylaminophosphonic acids as potent inhibitors of human prostatic acid phosphatase // Bioorg. Med. Chem. – 1996. – N 4. – P. 1693-1701.

[10] Burke T.R., Barchi J.J., George C., Wolf G., Shoelson S.E., Yan X. Conformationally constrained phosphotyrosylmimetics designed as monomeric src homology 2 domain inhibitors // J. Med. Chem. – 1995. – N 38. – P. 1386-1396.

[11] Atherton F.R., Hassall C.H., Lambert R.W. Synthesis and structure-activity relationships ofantibacterialphosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminome-thyl)phosphonic acid // J. Med. Chem. – 1986. – N 29. – P. 29-40.

[12] Lejczak B., Kafarski P., Sztajer H., Mastalerz P. Antibacterial activity of phosphono dipeptides related to alafosfalin // J. Med. Chem. – 1986. – N 29. – P. 2212-2217.

[13] Grembecka J.,Mucha A., Cierpicki T.,Kafarski P. The most potent organophospho-rusinhibitors of leucineaminopeptidase. Structure-based design, chemistry and activity // J. Med. Chem. – 2003. – N 46. – P. 2641-2655.

[14] Moore J.D., Sprott K.T., Hanson P.R. Conformationally constrained α-boc-aminophospho-nates via transition metal-catalyzed/curtius rearrangement strategies // J. Org.Chem. – 2002. – 67. – P. 8123-8129.

[15] Liu W.S., Rogers C.J., Fisher A.J., Toney M.D. Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow binding inhibition // Biochemistry. – 2002. – N 41. – P. 12320-12328.

[16] Huang J., Chen R. An overview of recent advances on the synthesis and biological activity of α-aminophosphonic acid derivatives // Heteroatom. Chem. – 2000. – N 11. – P. 480-492.

[17] Maier L., Diel P.J. Organic phosphorus compounds 941 preparation, physical and biologicalproperties of amino-arylmethylphosphonic and phosphonous acids // Phosphor. Sulfur Silicon. – 1991. – Vol. 57. – P. 57-64.

[18] Yager K.M., Taylor C.M., Smith A.B. III Asymmetric synthesis of α-aminophosphonates via diastereo selective addition of lithium diethyl phosphite to chelating imines // J. Am. Chem. Soc. – 1994. – Vol. 116. – P. 9377-9378.

[19] Bhadury P.S., Zhang Y.P., Zhang S., Song B.A., Yang S., Hu D.Y., Chen Z., Xue W., Jin L.H. An effective route to fluorine containing asymmetric alpha-aminophosphonates using chiral bronsted acid catalyst // Chirality. – 2009. – Vol. 21. – P. 547-557.

[20] Weiming X., Sha Zh., Song Y., Lin-Hong J., Pinaki S.B., De-Yu H., Yuping Zh.. Аsymmetric synthesis of α-aminophosphonates using theinexpensive chiral catalyst 1,1’-binaphthol phosphate // Molecules. – 2010. – Vol. 15. – P. 5782-5796.

[21] Матвеева Е.Д., Подругина Т.А., Присяжной М.В., Зефиров Н.С. Аминокислоты в каталитическом синтезе α-аминофосфонатов // Вест. Моск. Сер. 2. Химия. – 2007. – Т. 48, № 5. – С. 333-334.

[22] Махаева Г.Ф., Лущекина С.В., Серебрякова О.Г., Аксиненко А.Ю., Горева Т.В., Ричардсон Р.Дж., Мартынов И.В. Кинетика и механизм ингибирования сериновых эстераз фторсодержащими карбэтокси-1-аминофосфонатами // Доклады Акад. наук. – 2013. – T. 451, № 4. – C. 458-461.

[23] Вагапова Л.И., Шарафутдинова Д.Р., Базанова О.Б., Воронина Ю.К., Криволапов Д.Б., Бурилов А.Р., Ризванов И.Х., Пудовик М.А. Синтез и строение фосфорилированных ацеталей // Журнал общей химии. – 2014. – Т. 84, вып. 2. – С. 298-303.

[24] Вагапова Л.И., Амирова Л.Р., Бурилов А.Р., Пудовик М.А. Новые α-аминофос-фонаты, содержащие ацетальную группу, в реакции с 2-метилрезорцином // Журнал общей химии. – 2016. – Т. 86, вып. 3. – С. 532-535.

[25] Вагапова Л.И., Амирова Л.Р, Бурилов А.Р., Пудовик М.А., Синяшин O.Г. Синтез и строение новых фосфорилированных β-, γ-аминоацеталей, содержащих пространственно затрудненную фенольную группу // Журнал органической химии. – 2015. – Т. 51, вып. 9. – С. 1294-1297.

[26] Hamadi Н., Norouzi М. SO3H-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino phosphonates // Journal of Chemical Sciences. – 2018. – Р. 1530.

[27] Hazeri N., Maghsoodlou M.T., Habibi-Khorassani S.M., Aboonajmi J., Lashkari M., Sajadikhah S.S. A green protocol for one-pot three-component synthesis of α-amino phosphonates catalyzed by succinic acid // Res. Chem. Intermed. – 2014. – 50. – P. 1781.

[28] Hosseini М., Roosta S.A. Synthesisof 2-amino-4h-chromen-4-ylphosphonats via С-Р bond formation catalyzed by nano-rods ZnО under solvent-free condition // Combinatorial Chemistry and High Throughput Screening. – 2014. – 17. – Р. 47-52.

[29] Баяндина Е.В., Давыдова Е.Ю., Абаскалова М.А., Мусин Р.З., Альфонсов А.В. Новое направление в реакции диалкилхлорфосфитов с солями бензилиденаминокарбоновых кислот. Прямой синтез аминофосфонатов из изоструктурных бензилиденаминокарбоновых кислот // Известия Академии наук. Серия химическая. – 2005. – № 6. – С. 1449-1451.

[30] El-Refaie S.K., Mohamed M.A., Saad-Allah Kh.M. Synthesis and antimicrobial activity of α-aminophosphonates containing chitosan moiety // Arabian Journal of Chemistry. – 2015. – 8. – P. 427-432.

[31] Reddy C.B., Kumar K.S., Kumar M.A., Reddy M.N., Krishna B.S., Naveen M., Aru- nasree M.K., Reddy C.S., Raju C.N., Reddy C.D. PEG-SO(3)H catalyzed synthesis and cytotoxicity of α-aminophosphonates // J. Med. Chem. – 2012. – 47. – P. 553.

[32] Kukhar V.P., Hudson H.R. Aminophosphonic and aminophosphinic acids // Chemistry and biological activity. Chichester: Wiley. – 2000. – P. 579-621.

[33] Bhagat S., Chakraborti A.K. Zirconium (IV) compounds as efficient catalysts for synthesis of alpha-aminophosphonates // J. Org. Chem. – 2008. – 73. – P. 6029-6032.

[34] Torbati М.Т., Eshghi H., Rounaghi S.A., Shiri A., Mirzaei M. Synthesis, characterization and application of nitrogen–sulfur‑doped carbon spheres as an efficient catalyst for thepreparation of novel α‑aminophosphonates // Iranian Chemical Society. – 2017. – P. 1971-1982.

[35] Zhan Z., Yang R. Microwave-assisted one-pot synthesis of a-amino phosphonates via three component coupling on a silica gel support // J. Chem. Lett. – 2005. – 34. – P. 1042.

[36] Mucha A., Kafarski P., Berlicki L. Remarkable potential of the α-aminophosphona-te/phosphinate structural motif in medicinal chemistry // J. Med. Chem. – 2011. – 54. – P. 5955-5980.

[37] Atherton F.R., Hassall C. H., Lambert R.W. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminome-thyl)phosphonic acid // J. Med. Chem. – 1986. – Vol. 29, N 1. – P. 29-40.

[38] Allen M.C., Fuhrer W., Tuck B., Wade R.W. Renin inhibitors. Synthesis of transition-state analogue inhibitors containing phosphorus acid derivatives at the scissile bond // J. M. J. Med. Chem. – 1989. – 32. – P. 1652-1661.

[39] Liu W., Rogers C.J., Fisher A.J., Toney M.D. Aminophosphonate inhibitors of dialkyl-glycine decarboxylase: Structural basis for slow binding inhibition // Biochemistry. – 2002. – 41. – P. 12320-12328.

[40] Kafarski P.,Lejczak B. Aminophosphonic acids of potential medical importance // Curr. Med. Chem. Anti-cancer аgents. – 2001. – 1. – P. 301-312.

[41] Jin L.H., Song B.A., Zhang G.P., Xu R.Q., Zhang, S.M., Gao X.W., Hu D.Y., Yang S. Synthesis, structure, and bioactivity of N′-substituted benzylidene-3, 4, 5-trimethoxybenzohydrazide and 3-acetyl-2-substituted phenyl-5-(3, 4, 5-trimethoxyphenyl)-2, 3-dihydro-1, 3, 4-oxadiazole derivatives // Bioorg. Med. Chem. Lett. – 2006. – 16. – P. 5036-5040.

[42] Kudzin Z.H., Kudzin M.H., Drabowicz J., Stevens C. V. Aminophosphonic acids - phosphorus analogues of natural amino acids. Part 1: Syntheses of α-aminophosphonic acids // Curr. Org. Chem. – 2011. – 15. – P. 2015-2071.

[43] Orsini F., Sello G., Sisti M. Aminophosphonic acids and derivatives. synthesis and biological applications // Curr. Med. Chem. – 2010. – 17. – P. 264-289.

[44] Naydenova E., Troev K., Topashka-Ancheva, M., Hagele G., Ivanov I., Kril A. Synthesis, cytotoxicity and clastogenicity of novel α-aminophosphonic acids // Amino Acids.- 2007. – 33. – P. 695-702.

[45] Naydenova E.D., Todorov P.T., Troev K.D. Recent synthesis of aminophosphonic acids as potential biological importance // Amino Acids. – 2010. – 33. – P. 23-30.

[46] Flors V.,MirallesC., Gonzalez-Bosch C., Carda M., Garcia-Agustin P. Induction of protection against the necrotrophic pathogens Phytoph-thora citrophthora and Alternaria solani in Lycopersicon esculentum Mill. by a novel synthetic glycoside combined with amines // Physiol. Mol. Plant P. – 2003. – 63. – P. 151.

[47] Lamberth C., Kempf H.J., Kriz M. Synthesis and fungicidal activityofN-2-(3-methoxy-4-propargyloxy)phenethyl amides. Part 3: stretched andheterocyclic mandelamide oomyceticides // Pest Manag. Sci. – 2007. – 63. – P. 57-62.

[48] Jennings L.D., Rayner D.R., Jordan D.B., Okonya J.F., Basarab G.S., Amorose D.E., Anaclerio B.M., Lee J.K., Schwartz D.B., Whitmore K.A. Cyclobutane carboxamide inhibitors of fungal melanin: Biosynthesis and their evaluation as fungicides // Bioorg. Med. Chem. – 2000. – 8. – P. 897-907.

[49] Navickiene H.M., Miranda J.E.,Bortoli S.A., Kato M.J., Bolzani V.S., Furlan M. Toxicity of extracts and isobutyl amides from Piper tuberculatum: potent compounds with potential for the control of the velvet

[50] Huang X.C., Wang M., Pan Y.M., Yao G.A., Wang H.S., Tian H.A., Zhang Y. Synthesis and antitumor activities of novel thiourea α-aminophosphonates from dehydroabietic acid // Eur. J. Med. Chem. – 2013. – Vol. 69. – P. 508-520.

[51] Ye M.Y., Yao G.Y., Wei J.C., Pan Y.M., Liao Z.X., Wang H.S. Synthesis and antitumor activities of novel α-aminophosphonate derivatives containing an alizarin moiety // Int. J. Mol. Sci. – 2013. – 14. – P. 9424.

[52] Damiche R., Chafaa S. Synthesis of new bioactive aminophosphonates and study of theirantioxidant, anti-inflammatory and antibacterial activities as well theassessment of their toxicological activity // Journal of Molecular Structure. – 2017. – 1130. – P. 1009-1017.

[53] Das Dh., Brahmmananda C.V., Sivaraman N., Sivaramakrishna A., Vijayakrishna K.Synthesis and extraction behavior of alkyl and cyclic aminophosphonates towards actinides // Inorganica Chimica Acta. – 2018. – 482. – Р. 597–604.

[54] GalkinaI.V., Khayarov K.R., Davletshin R.R., Gaynullin A.Z.,Gerasimov A.V.,Shulaeva M.P. The Pudovik reaction: the synthesis of bioactive α-aminophosphonates with long alkyl chains // J. Phosphorus, Sulfur, and Silicon and the Related Elements. – 2019. – Vol. 194, I 4-6. – P. 463-466.

[55] Balint E., Tajti A., Adam A., Csontos I., Karaghiosoff K., Czugler M., Abranyi-Balogh P. The synthesis of α-aryl-α-aminophosphonates andα-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction.Beilstein //J. Org. Chem. – 2017. – Vol. 13. – P. 76-86.

[56] Mohamed M.A., El-Refaie K., Ahmed S.B., Abeer A.Kh., Mohammed A.E. Antioxidant and anticancer activities of α-aminophosphonates containing thiadiazole moiety // J. Saudi Chemical Society. – 2018. – Vol. 22. – P. 34-41.

Downloads

Published

2021-05-03