SYNTHESIS OF IONIC COMPOUNDS BASED ON TRIMECAINE IN CLASSICAL CONDITION AND USING ALTERNATIVE METHODS

Authors

  • A. A. DAULETBAKOV Kazakh-British Technical University
  • Ye. O. BELYANKOVA Kazakh-British Technical University
  • D. S. ZOLOTAREVA School of Chemical & Biochemical Engineering, Satbayev University
  • V. K. Yu A.B. Bekturov Institute of chemical sciences
  • A. G. ZAZYBIN Kazakh-British Technical University

Keywords:

trimecaine, ionic compound, microwave activation, ultrasound activation

Abstract

This article presents the results of the synthesis of new and known ionic compounds based on 2-diethylamino-N-(2,4,6-trimethylphenyl)acetamide (trimecaine) in the classical conditions and using microwave and ultrasound activation. Syntheses of ionic compounds were performedviaN-alkylation of trimecaine with iodoalkanes. The highest yields were observed when microwave irradiation was used to promote the reaction, ultrasound activation was less effective and mild yields were observed in classical conditions.

References

[1] Gawande M.B., Bonifácio V.D., Luque R., Branco P.S., Varma R.S. Solvent-free and catalysts-free chemistry // A benign pathway to sustainability. ChemSusChem. 2014. N 7. P. 24-44.

[2] Calcio G.E., Manzoli M., Carnaroglio D., Wu Z., Grillo G., Rotolo L., Medlock J., Bonrath W., Cravotto G. Sonochemical preparation of alumina-spheres loaded with Pd nanoparticles for 2-butyne-1,4-diol semi-hydrogenation in a continuous flow microwave reactor // RSC Adv. 2018. N 8. P. 7029-7039.

[3] Tanaka K., Toda F. Solvent-Free Organic Synthesis // Chem. Rev. 2000. N 100. P. 1025-1074.

[4] Maiuolo L., De Nino A., Merino P., Russo B., Stabile G., Nardi M., D’Agostino N., Bernardi T. Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones // Arab. J. Chem. 2016. N 9. P. 25-31.

[5] Santos H.M., Lodeiro C., Capelo-Martinez J. Ultrasounds in Chemistry // Analytical Applications.WILEY-VCH Verlag GmbH & Co KgaA; Weinheim, Germany. 2009. ISBN 10. P. 1-16.

[6] Kappe C.O. Controlled Microwave Heating in Modern Organic Synthesis // Angew. Chem. Int. Ed. 2004. N 43. P. 6250-6284.

[7] Nardi M., Herrera Cano N., Costanzo P., Oliverio M., Sindona G., Procopio A. Aqueous MW eco-friendly protocol for amino group protection // RSC Adv. 2015. N 5. P. 18751-18760.

[8] Oliverio M., Nardi M., Cariati L., Vitale E., Bonacci S., Procopio A. “On Water” MW-Assisted Synthesis of Hydroxytyrosol Fatty Esters // ACS Sustain. Chem. Eng. 2016. N 4. P. 661-665.

[9] Oliverio M., Costanzo P., Nardi M., Calandruccio C., Salerno R., Procopio A. Tunable microwave-assisted method for the solvent-free and catalyst-free peracetylation of natural products // Beilstein J. Org. Chem. 2016. N 12. P. 2222-2233.

[10] Nardi M., Bonacci S., Cariati L., Costanzo P., Oliverio M., Sindona G., Procopio A. Synthesis and antioxidant evaluation of lipophilic oleuropein aglycone derivatives // Food Funct. 2017. N 8. P. 4684-4692.

[11] Cravotto G., Boffa L., Mantegna S., Perego P., Avogadro M., Cintas P. Improved extrac-tion of vegetable oils under high-intensity ultrasound and/or microwaves // Ultrason. Sono-chem. 2008. N 15. P. 898-902.

[12] Woerly E.M., Roy J., Burke M.D. Synthesis of Most Polyene Natural Product Motifs Using Just 12 Building Blocks and One Coupling Reaction // Nat. Chem. 2014. N 6. P. 484-491.

[13] Pawełczyk A., Sowa-Kasprzak K., Olender D., Zaprutko L. Molecular Consortia-Various Structural Concepts and Powerful Approach in More Effective Therapeutics Synthesis // Int. J. Mol. Sci. 2018. N 19. P. 1104.

[14] Peng Y., Song G. Simultaneous Microwave and Ultrasound Irradiation: A Rapid Synthesis of Hydrazides // Green Chem. 2001. N 3. P. 302-304.

[15] Cravotto G., Cintas P. The Combined Use of Microwaves and Ultrasound: Improved Tools in Process Chemistry and Organic Synthesis // Chem. Eur. J. 2007. N 13. P. 1902-1909.

[16] Martina K., Tagliapietra S., Bargre A., Cravotto G. Combined Microwaves/Ultrasound, a Hybrid Technology. Top. Curr. // Chem. 2016. N 10. P. 374-379.

[17] Leonellia C., Mason T.J. Microwave and Ultrasonic Processing: Now a Realistic Option for Industry // Chem. Eng. Process. 2010. N 49. P. 885-900.

[18] Zbancioc G., Zbancioc A.M., Mangalagiu I.I. Ultrasound and Microwave Assisted Synthesis of Dihydroxyacetophenone Derivatives with or without 1,2-Diazine Skeleton. Ultrason // Sonochem. 2014. N 21. P. 802-811.

[19] Ragaini V., Pirola C., Borrelli S., Ferrari C., Longo I. Simultaneous Ultrasounds and Microwave New Reactor: Detailed Description and Energetic Considerations. Ultrasonics // Sonochem. 2012. N 19. P. 872-876.

[20] Kappe O. Angew. Chem. 2004, 116, 6408-6443; Angew. Chem. Int. Ed. 2004, 43, 6250-6284.

[21] Perreux L., Loupy A. Tetrahedron 2001, 57, 9199-9223.

[22] Suslick K.S., Crum L.A. in Encyclopedia of Acoustics (Ed.: M. J. Crocker), Wiley, New York, 1997, pp. 271-282.

[23] Cravotto G., Cintas P. Chem. Soc. Rev. 2006, 35, 180-196.

[24] Chen C.G., Hong P.J., DaiS.H., KanJ.D. Chem. Soc. Faraday Trans. 1995, 91, 1179-1180.

Downloads

Published

2021-05-03