ULTRAFINECOPPER AND NICKEL POWDERS INTHE ELECTRO-CATALYTICHYDROGENATIONOF ORGANIC COMPOUNDS

Authors

  • E.A. SOBOLEVA Institute of Organic Synthesis and Chemistry of Coal of Kazakhstan Republic
  • Ya.A. VISURKHANOVA Institute of Organic Synthesis and Chemistry of Coal of Kazakhstan Republic
  • N.M. IVANOVA Institute of Organic Synthesis and Coal Chemistry the Republic of Kazakhstan
  • М.Е. BEISENBEKOVA Institute of Organic Synthesis and Coal Chemistry the Republic of Kazakhstan
  • S.O. KENZHETAEVA Academician E.A. Buketov Karaganda University

Keywords:

ultrafine metal powders, copper, nickel, polymer stabilizers, electrocatalytic hydrogenation of organic compounds

Abstract

Ultrafine copper and nickel powders are synthesized by a chemical reduction of the metal cations from their salts in an aqueous ethanol solution without and with the addition of a polymer stabilizer (polyvinylpyrrolidone and polyvinyl alcohol). The structure and morphological features of the prepared metal powders were investigated by X-ray phase analysis and electron microscopy. The electrocatalytic properties of the Cu and Ni powders have been studied in the electrohydrogenation of acetophenone, nitrobenzene, p-nitroaniline, and cyclohexanone. A higher electrocatalytic activity of Cu powders, as well as skeletal copper, was established in the electrohydrogenation of the first three of the listed compounds in comparison with nickel powders, which is explained by the ability of copper cations to be reduced from its oxides in the electrochemical system under investigation. It is shown that the use of polymer stabilizers in the synthesis of Cu and Ni powders contributes to reducing metal particle sizes, but does not increase the electrocatalytic activity of the corresponding metal powders.

REFERENCES

[1] Copyright certificate No. 196732. USSR. Method of activation of a ferromagnetic electrode / Kirilyus I.V., MatveichukA.Ya., Zhuk M.A., Azerbaev I.N., Sokolsky D.V. – Published 31.05.1967. Bulletin No. 12.

[2] Copyright certificate No.247250. USSR. Electrode with an active layer / Kirilyus I.V., MatveichukA.Ya., Zhuk M.A. – Published 04.07.1969. BulletinNo. 22.

[3] Kirilyus I.V. Electrocatalytichydrogenation.–Alma-Ata: Science KazSSR, 1981.– 135 p.

[4] Kirilyus I.V., Bekenova U.B., Kulakova E.V., Soboleva E.A., Do S.V., Ivanova N.M., Sivolobova O.A. Electrocatalysis in the synthesis of fragrant substances.– Karaganda:Publishing house of Karaganda State University, 2006.– 173 p.

[5] Ivanova N.M., Soboleva E.A., Kulakova E.V. Electrocatalytic hydrogenation of nitrogen heterocycles. – Karaganda: «Glasir», 2019. –204 p.

[6] Baeshov A.B., ZhurinovM.Zh. About the formation of ultrafine metalpowders in aqueous solutions during cathodic polarization and during polarization with alternating current // Chemical Bulletin of Al-FarabiKazNU. – 2008. – No. 2. – P. 12-14.

[7] Smith A.J., Trimm D.L. The preparation of skeletal catalysts // Ann. Rev. Mater. Res. – 2005. – V.35. – P. 127-142.

[8] Pomogaylo A.D., Rosenberg A.S., Uflyand I.E. Metal nanoparticles in polymers. – М.:Khimiya, 2000. – 672 p.

[9] Wahyudi S., Soepriyanto S., Mubarok M.Z., Sutarno S. Synthesis and applications of copper nanopowders – A review // IOP Conf. Series: Materials Science and Engineering. – 2018. – Vol. 395, No. 012014. – 8 p.

[10] Umer A., Naveed Sh., Ramzan N., RafiqueM.Sh. Selection of a suitable method for the synthesis of copper nanoparticles // NANO: Brief Reports and Reviews. – 2012. – Vol. 7, No. 5. – 18 p.

[11] Soldatenko E.M., DoroninS.Yu., Chernova R.K. Chemical methods for producing copper nanoparticles // Butlerovskiesoobshcheniya. – 2014. – Vol.31, No. 1. – P.103-113.

[12] Valle-Orta M., Diaz D., Santiago-Jacinto P., Vazquez-Olmos A., Reguera E. Instantaneous synthesis of stable zerovalent metal nanoparticles under standart reaction conditions // J. Phys. Chem. B. – 2008. – Vol. 112. – P.14427-14434.

[13] Prucek R., Kvitek L., Panacek A., Vancurova L., Soukupova Ja., Jancik D., Zboril R. Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency // J. Mater. Chem. – 2009. – Vol. 19. – P. 8463-8469.

[14] Su X., Zhao J., Bala H., Zhu Y., Gao Y., Ma Sh., Wang Z. Fast synthesis of stable cubic copper nanocages in the aqueous phase // J. Phys. Chem. C. – 2007. – Vol. 111. – P.14689-14693.

[15] Kobayashi Y., Nakazawa H., Maeda T., Yasuda Y., Morita T. Synthesis of metallic copper nanoparticles and metal-metal bonding process using them // Advances in Nano Research. – 2017. – Vol. 5, No. 4. – P. 359-372.

[16] Wen J., Li J., Liu S., Chen Q.-Y. Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2011. – Vol. 373, No. 1-3. – P.29-35.

[17] Wang Y., Chen P., Liu M. Synthesis of well-defined copper nanocubes by a one-pot solution process // Nanotechnology. – 2006. – Vol. 17. – P. 6000-6006.

[18] Umer A., Naveed Sh., Ramzan N., RafiqueM.Sh., Imran M. A green method for the synthesis of copper nanoparticles using L-ascorbic acid // Revista Materia. – 2014. – Vol. 19, No. 03. – P. 197-203.

[19] Khan A., Rashid A., Younas R., Chong R. A chemical reduction approach to the synthesis of copper nanoparticles // Int. Nano Lett. – 2016. – Vol. 6. – P. 21-26.

[20] Blosi M., Albonetti S., Dondi M., Martelli C., Baldi G. Microwave-assisted polyol synthesis of Cu nanoparticles // J. Nanopart. Res. – 2011. – Vol. 13. – P. 127-138.

[21] Park B.K., Jeong J., Kim D., Moon J., Lim S., Kim J.S. Synthesis and size control of monodisperse copper nanoparticles by polyol method // J. Colloid and Interface Sci. – 2007. – Vol. 311. – P.417-424.

[22] Fievet F., Ammar-Merah S., Brayner R., Chau F., Giraud M., Mammeri F., Peron J., Piquemal J.-Y., Sicard L., Viau G. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions // Chem. Soc. Rev. – 2018. – Vol. 47, No. 14. – P. 5187-5233.

[23] Couto G.G., Klein J.J., Schreiner W.H., Mosca D.H., Oliveira A J.A., Zarbin A.J.G. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties // J. Colloid and Interface Sci. – 2007. – Vol. 311. – P. 461-468.

[24] Roselina N.R.N., Azizan A. Ni nanoparticles: study of particles formation and agglomeration // Procedia Engineering. – 2012. – Vol. 41. – P. 1620-1626.

[25] Wu S.-H., Chen D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol // J. Colloid and Interface Sci. – 2003. – Vol. 259. – P. 282-286.

[26] Wang d.-P., Sun D.-B., Yu H.-Y., Meng H.-M. Morphology controllable synthesis of nickel nanopowders by chemical reduction process // J. Crystal Growth. – 2008. – Vol. 310, No. 6. – P. 1195-1201.

[27] Suslonov V.V., Osmolovskaya O.M., Osmolovskii M.G. Organic shell influence on physicochemical properties of nickel polyol nanoparticles// Rus. J. Gen. Chem. – 2012. – Vol.82, No. 9. – P. 1585-1586.

[28] Li P., Guan J., Zhang Q., Zhao W. preparation and characterization of monodisperse nickel nanoparticles by polyol process // J. Wuhan University of Technology – Mater. Sci. Ed. – 2005. – Vol. 20, No. 4. – P. 35-37.

[29] Li Z., Han C., Shen J. Reduction of Ni2+ by hydrazine in solution for the preparation of nickel nanoparticles // J. Mater. Sci. – 2006. – Vol. 41, No. 11. – P. 3473-3480.

[30] Ignatovich Z.V., Ermolinskaya A.L., Koroleva E.V., Eremin A.N., Agabekov V.E., Katok Y.M. Catalytic activity of nickel nanoparticles in the reaction of reduction of nitroarenes // Rus. J. General Chemistry. – 2018. – Vol. 88, No. 3. – P. 410-417.

[31] VisurkhanovaYa.A., Ivanova N.M., Soboleva E.A., Muldakhmetov Z.M. Сopper nanoparticles in the electrocatalytic hydrogenation of acetophenone // Chemical J. Kazakhstan. – 2019. – Vol. 68, No. 4. – P. 37-45.

[32] Yavorovsky N.A. Obtaining ultrafine powders by the electric explosion method // Izv. vuzov. Fizika. – 1996. – No. 4. – P. 114-136.

Published

2021-07-01