ЕҢБЕК ҚЫЗЫЛ ТУ ОРДЕНДІ «Ә. Б. БЕКТҰРОВ АТЫНДАҒЫ ХИМИЯ ҒЫЛЫМДАРЫ ИНСТИТУТЫ» АКЦИОНЕРЛІК ҚОҒАМЫ

ҚАЗАҚСТАННЫҢ Химия Журналы

Химический Журнал Казахстана

CHEMICAL JOURNAL of KAZAKHSTAN

АКЦИОНЕРНОЕ ОБЩЕСТВО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ «ИНСТИТУТ ХИМИЧЕСКИХ НАУК им. А. Б. БЕКТУРОВА»

2 (62)

АПРЕЛЬ – ИЮНЬ 2018 г. ИЗДАЕТСЯ С ОКТЯБРЯ 2003 ГОДА ВЫХОДИТ 4 РАЗА В ГОД

> АЛМАТЫ 2018

L. A. KAYUKOVA¹, K. D. PRALIYEV¹, G. T. DYUSEMBAEVA¹, K. AKATAN², E. SHAYMARDAN², S. K. KABDRAKHMANOVA²

¹JSC «A. B. Bekturov Institute of Chemical Sciences», Almaty, Republic of Kazakhstan, ²S. Amanzholov East Kazakhstan State University, Ust-Kamenogorsk, Republic of Kazakhstan

SYNTHESIZE 1,3,5-SUBSTITUTED ISOXAZOLES AT EXCESSIVE BENZOYLATION OF β -AMINOPROPIOAMIDOXIMES IN PYRIDINE


Abstract. Excessive acylation of β -aminopropioamidoximes (β -amino group: piperidin-1-yl, morpholin-1-yl, benzimidazol-1-yl, 4-phenylpiperazin-1-yl, thiomorpholin-1-yl) was carried out with a doubling excess of benzoyl chloride in pyridine at the boiling point of the solvent for 4–8 h. The isolated products are: N,O-dibenzoyl- β -aminopropioamidoxime dihydrochlorides in the case of epkyy allikue amidoximes, respectively. Chloride hydrate of 2-amino-1-aza-7-phenylaminospiro(4.5)decane-2-ene-10-ammonium and benzoic acid were the isolated products at using as starting amidoxime β -(4-phenylpiperazin-1-yl)propioamidoxime and hydrochloride of O-benzoyl- β -(thiomorpholin-1-yl)propioamidoxime at using of β -(thiomorpholin-1-yl)propioamidoxime as substrate. The formation of 2-amino-1-aza-7-phenylaminospiro(4.5)decane-2-ene-10-ammonium chloride monohydrate can be represented as the initial formation of O-benzoyl- β -aminopropioamidoxime hydrochloride, its dehydration to 1,2,4-oxadiazole, and the subsequent passing of the Boulton-Katritazky rearrangement to form a spiropyrazolinium compound and benzoic acid.

Key words: β -Aminopropioamidoximes, excessive acylation in pyridine, the Boulton-Katritzky rearrangement, benzoyl chloride, IR spectroscopy, ¹H and ¹³C NMR spectroscopy.

Introduction. Previously, in the series of products of monoacylation of β -aminopropioamidoximes where among the bases and hydrochlorides of O-aroyl- β -aminopropioamidoximes, and in the array of products of their dehydration – 5-substituted phenyl-3-(β -aminoethyl)-1,2,4-oxadiazoles the compounds possessing with high biological activity were found.

The list of practically useful of β -aminopropioamidoxime derivatives includes such as properties antiarrhythmic, local anesthetic and antitubercular [1, 2]. To modify β -aminopropioamidoximes in potentially biologically active derivatives containing a 3,4,5-substituted isoxazole heterocycle, the conditions for their interaction with a double excess of acylating agents were searched. It is known that the reaction of amidoxime 4-chlorophenylacetic acid with aromatic acid chlorides with a double molar excess of acid chlorides in pyridine leads to the formation of N-[4-(4-chlorophenyl) -5-phenylisoxazol-3-yl]benzamide (scheme 1) [3].

Structural analogs of isoxazole exhibit various types of biological activity and are used for a long time in pharmaceutics. Sulfamethoxazole is widely known as part of the synergistic sulfonamide bacteriostatic antibiotic biseptol; cyclose-

rine as an antibiotic agent with anti-tuberculosis, antibacterial activity, and also used in the treatment of leprosy. Biseptol and cycloserine are included in the WHO Model List of Essential Medicines [4]. The antibiotic Co-trimaxazole (sulfamethoxazole and trimethoprim), sulfisoxazole (or sulfafurazole) is used as an agent against a wide range of gram-positive and gram-negative microorganisms [5]. Oxacillin is an antimicrobial drug [6].

EXPERIMENTAL PART

IR spectra were recorded on a NICOLET 5700 FT-IR device in KBr tablets. NMR spectra (¹H and ¹³C) are recorded on a NMR Avance III 500 MHz Bruker (Germany) device with an internal HMDS standard as solutions of compounds **6–11** in DMSO-d₆. Chemical shifts are determined with respect to solvent signals (2,51 ppm for ¹H nuclei and 40,0 ppm for ¹³C nuclei). The melting points was determined in glass capillaries on a TPL device. The purity of the products and the course of the reaction were monitored by TLC on Sorbfil plates (ZAO Sorbopolymer) with a sorbent-loaded silica gel layer CTX-1A with 5–17 µm grain and UV-254 UV indicator. The solvents used in the synthesis and recrystallization of the compounds and for elution in the TLC method (ethanol, i-PrOH, benzene) were prepared by standard procedures [11]. The solvent ratio ethanol : benzene in the eluent for TLC amounted to 3 : 1.

The two-step synthesis of the starting β -aminopropioamidoximes [β -amino group: piperidin-1-yl (1) and morpholin-1-yl (2)], we proposed to carry out in one reactor according to the "one-pot" method [12, 13]. β -Aminopropioamidoximes **3–5** [β -amino group: benzimidazol-1-yl (3); 4-phenylpiperazin-1-yl (4); thiomorpholin-1-yl (5)] were obtained by a two-step synthesis with isolation of β -aminopropionitriles and subsequent reaction of nitriles with hydroxylamine in absolute ethanol [14, 15].

N,*O*-*Dibenzoyl*- β -(*piperidin*-1-*yl*)*propioamidoxime dihydrochloride* (6). To 1000 mg (53 mmol) of β -(piperidin-1-yl)propioamidoxime (1) in 45 ml of pyridine 1,39 ml (106,0 mmol) of benzoyl chloride was added dropwise; then the reaction mixture was kept at room temperature for 2 h with stirring. After that the reaction mixture with TLC control was stirred at 115 °C for 4 h. The solvent was distilled off in a vacuum of a water jet pump; the residue was recrystallized from

i-PrOH. The yield of colorless crystals of N,O-dibenzoyl- β -(piperidin-1-yl)-propioamidoxime dihydrochloride (**6**) amounted to 1300 mg (89%); m.p. 155 °C (i-PrOH); R_f 0,24. Found: C 58,62; H 5,46; Cl 15,30; N 9,07. C₂₂H₂₇Cl₂N₃O₃. Calculated: C 58,41; H 6,02; Cl 15,67; N 9,29.

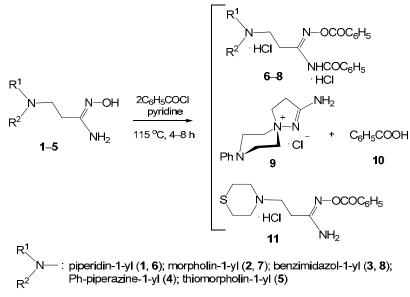
N,*O*-*Dibenzoyl-β*-(morpholin-1-yl)propioamidoxime dihydrochloride (7). To 300 mg (17 mmol) of β-(morpholin-1-yl)propioamidoxime (**2**) in 15 ml of pyridine, 0,4 ml (34 mmol) of benzoyl chloride was added dropwise; then the reaction mixture was kept at room temperature for 2 h with stirring. After that the reaction mixture was stirred at 115 °C for 6 h with TLC control. The solvent was distilled off under an oil pump vacuum; the residue was recrystallized from i-PrOH. The yield of a fine white powder of N,O-dibenzoyl-β-(morpholin-1-yl)propio-amidoxime dihydrochloride (**7**) was 190 mg (7,5 mmol) (43%); m.p. 110 °C (i-PrOH); *R*_f 0,40. Found: C 55,78; H 5,20; Cl 15,24; N 9,03. C₂₁H₂₅C₁₂N₃O₄. Calculated: C 55,51; H 5,55; Cl 15,61; N 9,25.

N,*O*-*Dibenzoyl*- β -(*benzimidazol*-1-*yl*)*propioamidoxime dihydrochloride* (8). To a suspension of 1000 mg (49 mmol) of β -(benzimidazol-1-yl)propioamidoxime (3) in 45 ml of pyridine at room temperature 1,39 ml (98 mmol) of benzoyl chloride was added dropwise; then the reaction mixture was kept at room temperature for 2 h with stirring. After that the reaction mixture was heated at 115 °C for 6 h. The end of the reaction is fixed by the presence on the plate for TLC of a single spot of product 8 with R_f 0,69. Pyridine was evaporated in a vacuum of a water jet pump; The precipitate was recrystallized from EtOH. Yield of colorless crystals of N,O-dibenzoyl- β -(benzimidazol-1-yl)propioamidoxime dihydrochloride (8) was 370 mg (27%); m.p. 180 °C (EtOH); R_f 0,69. Found: C 59,14; H 4,96; Cl 14,55; N 11,50. C₂₄H₂₂Cl₂N₄O₃. Calculated: C 59,39; H 4,57; Cl 14,61; N 11,54.

Chloride of 2-amino-1-aza-7-phenylaminospiro(4.5)decane-2-ene-10-ammonium (9) and benzoic acid (10). To 1000 mg (40 mmol) of β -(4-phenylpiperazin-1-yl)propioamidoxime (4) in 45 ml of pyridine 0,93 ml (80 mmol) of benzoyl chloride was added dropwise; then the reaction mixture was kept at room temperature for 2 h with stirring. After that the reaction mixture with TLC control was stirred at 115 °C for 4 h. The solvent was distilled off in a vacuum of a water jet pump; the residue was sublimed in a vacuum of oil pump at 50 °C and 2 mm Hg. At first 420 mg (43%) of a white precipitate of benzoic acid (10) with R_f 0,76 was collected on a cooled part of the sublimation apparatus; m.p. 121 °C (EtOH) [colorless needles, m.p. 122 °C (EtOH)] [16]. Found: C 68,95; H 5,22. C₇H₆O₂. Calculated: C 68,85; H 4,95. Then the residue in the distillation flask was recrystallized. Yield of light yellow powder of chloride of 2-amino-1-aza-7phenylaminospiro(4.5)decane-2-ene-10-ammonium (9) was 440 mg (39%); m.p. 270 °C (i-PrOH); R_f 0,08. Found: C 54,94; H 7,82; Cl 11,97; N 19,48. C₁₃H₂₁ClN₄O. Calculated: C 54,83; H 7,43; Cl 12,45; N 19,67.

O-Benzoyl-\beta-(thioporpholin-1-yl)propioamidoxime hydrochloride (11). To 1000 mg (26 mmol) of β -(thiomorpholin-1-yl)propioamidoxime (5) in 10 ml of pyridine, with stirring 0,61 ml (52 mmol) of benzoyl chloride was added; then the reaction mixture was kept at room temperature for 2 h with stirring. After that the

reaction mixture was stirred at 115 °C for 8 h and monitored by TLC. The solvent was distilled off in a vacuum of a water jet pump; the precipitate was recrystallized from i-PrOH. Yield of O-benzoyl- β -(thioforolin-1-yl)propioamidoxime hydrochloride (**11**) was 510 mg (52%), m.p. 119 °C (i-PrOH); R_f 0,80. [m.p. 120 °C (i-PrOH); R_f 0,79] [15]. Found: C 50,72; H 6,26; Cl 11,02; N 13,06. C₁₄H₂₀ClN₃O₂S. Calculated: C 50,98; H 6,11; Cl 10,75; N 12,74.


RESULTS AND DISCUSSION

We have not previously studied the acylation of β -aminopropioamidoximes under rigid conditions – with an excess of the acylating agent, in a polar solvent, at the boiling point of the solvent. The preparation of isoxazoles based on β -aminopropioamidoximes by the method [3] would allow us to investigate the littleknown question of the excessive acylation of a multifunctional amidoxime group and, in the case of isolating new isoxazole derivatives, to study their biological activity.

When analyzing reaction products based on physicochemical and spectral data (elemental analysis, m.p., R_f , IR spectra and ¹H and ¹³C NMR spectra) (table 1–3), it was found that in the case of amidoximes **1–3** products **6–8** were isolated in the form dihydrochloride of double acylation products on oxygen and nitrogen atoms of the amidoxime group. In the acylation of β -(4-phenylpiperazin-1-yl)propioamidoxime (**4**), a spiropyrazolinium compound **9** and benzoic acid (**10**) were obtained; O-benzoyl-(β -thiomorpholin-1-yl)propioamidoxime hydrochloride (**11**) was a single product in the reaction of amidoxime **5** (table 1, scheme 2):

Com-	Gross formula	Found, % Calculated, %				Reaction	Mp, °C	R_{f}	Output,
pound		С	Н	Cl	Ν	time, h	°C		%
6	$C_{22}H_{27}Cl_2N_3O_3$	<u>58,62</u> 58,41	<u>5,46</u> 6,02	<u>15,30</u> 15,67	<u>9,07</u> 9,29	4	155	0,24	89
7	$C_{21}H_{25}Cl_2N_3O_4$	<u>55,78</u> 55,51	<u>5,20</u> 5,55	<u>15,24</u> 15,61	<u>9,03</u> 9,25	6	110	0,40	43
8	$C_{24}H_{22}Cl_2N_4O_3$	<u>59,14</u> 59,39	<u>4,96</u> 4,57	<u>14,55</u> 14,61	<u>11,50</u> 11,54	6	180	0,69	44
9	C ₁₃ H ₁₉ ClN ₄	<u>58,59</u> 58,53	<u>7,68</u> 7,18	<u>13,49</u> 13,29	$\frac{21,35}{21,00}$	4	270 (decomp.)	0,08	39
10	$C_7H_6O_2$	<u>68,76</u> 68,85	<u>5,26</u> 4,95		_	4	121	0,76	43
11	$C_{14}H_{20}ClN_3O_2S$	<u>50,72</u> 50,98	<u>6,26</u> 6,11	<u>11,02</u> 10,75	<u>13,06</u> 12,74	8	120	0,80	52

Table 1 – Physico-chemical characteristics of the reaction products of β -aminopropioamidoximes with two equivalents of benzoyl chloride **6–11**

Scheme 2

The products of N,O-dibenzoylation of β -aminopropioamidoximes (**6–8**) have not been synthesized before. Obviously, the probable subsequent intramolecular splitting off of the water molecule involving protons of the α -methylene group and the carbonyl oxygen atom of the ester group could lead to isoxazoles.

IR spectral characteristics of compounds **6–8**: the band of valence bond vibration $v_{C=O}$ is in the range of 1686–1731 cm⁻¹; the stretching vibrations of the $v_{C=N}$ bonds are manifested in the region of 1638–1686 cm⁻¹; the valence bond vibration bands $v_{C=C}$ are present in the region of 1584–1620 cm⁻¹; in the region 1264–1293 cm⁻¹ there are bands of stretching vibrations of the bonds v_{C-O} ; the stretching vibrations of the $v_{N(+)-H}$ ammonium bonds – in the region of 2464–2835 cm⁻¹ (table 2).

Com-	Valence vibrations of bonds, v, cm-1								
pound	$\nu_{C=N}$	$\nu_{C=O}$	$\nu_{C=C}$	ν_{Csp3-H}	v_{Csp2-H}	ν_{C-O}	$\nu_{N(+)\text{-}H}\left(\nu_{N\text{-}H}\right)$		
6	1641	1727	1600	2958	3202-3375	1267	2562–2700 (3376)		
7	1638	1731	1620	2930	3200-3375	1264	2464–2700 (3375)		
8	1650	1730	1601	3063	3250-3416	1246	2500–2680 (3429)		
9	1644	_	1600	2846	3116-3220	_	(3300; 3415)		
10	_	1675	1600	-	3067; 3235; 3414	1289	3414 (v _{о-н})		
11	1640	1714	1611	2907	-	1268	2553; 2582; 2640 (3416; 3488)		

Table 2 – Infrared spectra of the products of acylation of β -aminopropioamidoximes (6–11) by two equivalents of benzoyl chloride in pyridine

In ¹H NMR spectra of N,O-dibenzoylation products **6–8**, in contrast to the literature data [1], the α -CH₂ group signal is retained, which has a triplet structure from the spin-spin interaction with the β -CH₂ group (table 3). Signals of α - and β -methylene groups are in the regions δ 2,73–3,50 ppm. and δ 3,10–4,85 ppm, respectively.

The intensity of multiplet signals of aromatic protons in the range of δ 7–8 ppm indicates the presence in the molecules of compounds 6, 7 ten C_{sp2}H protons, and in the molecule of compound 8 – fifteen C_{sp2}H protons.

In addition, in the area of δ 6,85–7,50 ppm in the spectra of ¹H NMR compounds **6–8** there is a signal of ammonium protons of the N(+)H₂CO₆H₅ group, and in the range of δ 10,55–12,90 ppm – the signal of the ammonium N(+)H proton coordinated on the nitrogen atom of the β -amino group.

Table $3 - {}^{1}H$ and ${}^{13}C$ NMR s	pectra of compounds 6–11.	, solutions in DMSO- d_6 , δ , ppm*

Com- pound	Chemical shifts, δ, ppm (J, Hz)					
6	1,39; 1,68; 1,79 [6H, m, $-N(CH_2)_2(\underline{CH}_2)_3$]; 2,74 (2H, t, $J = 6,0, \alpha - CH_2$); 2,90 [4H, m, $-N(+)(\underline{CH}_2)_2(CH_2)_3$]; 3,30 (2H, t, $J = 6,0; \beta - CH_2$); 6,87 [2H, s, $N(+)H_2$]; 7,51; 7,65; 8,11 (10H, m, C ₆ H ₅); 10,74 [1H, s, $N(+)H$]	21,82; 22,72; 22,83; 25,87; 52,44; 53,11; 129,01; 129,71; 129,83; 129,88; 133,49; 156,80; 163,88				
7	2,76 (2H, t, $J = 7,0, \alpha$ –CH ₂); 3,15 [4H, m, -N(CH ₂) ₂ (<u>CH₂</u>) ₂ O]; 3,67 (2H, t, $J = 7,0, \beta$ –CH ₂); 3,94 [4H, m, -N(+)(<u>CH₂)₂(CH₂)₂O]</u> ; 6,85 [2H, s, N(+)H ₂]; 7,49–8,12 (10H, m, C ₆ H ₅); 11,65 [1H, s, N(+)H]	25,55; 25,60; 31,43; 31,45; 51,46; 53,12; 62,08; 62,43; 63,24; 63,65; 129,01; 129,84; 129,88; 133,48; 156,61; 163,86; 169,02; 169,10				
8	3,40 (2H, t, $J = 7,0, \alpha$ –CH ₂); 4,74 (2H, t, $J = 7,0, \beta$ –CH ₂); 7,48; 7,51; 7,60; 7,65; 7,94; 7,96; 8,04; 8,06; 9,00 [17H, m, C _{sp2-H} and N(+)H ₂]; 12,95 [1H, s, N(+)H]	26,35; 43,00; 123,73; 124,61; 124,79; 128,25; 129,00; 129,71; 130,01; 131,27; 133,27; 133,79; 143,54; 167,75; 168,57; 175,57				
9	3,19 (2H, t, $J = 6,0, \beta$ –CH ₂); 3,44 [2H, m, half-width 12,5 mm, PhN(CH ₂) ₂ (axial)]; 3,56 [4H, m, N(+)(CH ₂) ₂]; 3,78 [2H, m, half-width 11 mm, PhN(CH ₂) ₂ , (equatorial)]; 3,98 (2H, t, $J = 6,0, \alpha$ –CH ₂); 6,86; 7,02; 7,27 (5H, m, C ₆ H ₅); 7,53 (2H, s, NH ₂)	31,57; 44,57; 61,42; 62,91; 116,32; 120,38; 129,58; 149,94; 169,11				
10	7,50; 7,63; 7,95 (5H, m, C ₆ H ₅); 12,95 (1H, s, COOH)	129,02; 129,72; 131,24; 133,31; 167,76				
11	2,76 (2H, t, $J = 7,0, \alpha$ –CH ₂); 3,39 (2H, t, $J = 7,0, \beta$ –CH ₂); 3,35 (4H, m, S(CH ₂) ₂]; 3,70 [4H, m, N(+)(CH ₂) ₂]; 6,86 (2H, s, NH ₂); 7,51; 7,64; 8,12 (5H, m, C ₆ H ₅); 11,37 [1H, s, N(+)H]	24,25; 25,61; 53,43; 53,68; 129,00; 129,83; 133,48; 148,56; 156,67; 163,88				
*The assignment of the multiplet signals of the protons of the methylene groups of						

*The assignment of the multiplet signals of the protons of the methylene groups of the thiomorpholine heterocycle, having the intensity of two protons which adjacent to the $N(+)(CH_2)_2$ nitrogen atom of compound 9, to equatorial and axial is made on the basis of a half-width comparison of the signal. The half-width of the axial signals of the protons is greater than the half-width of the equatorial signals.

In the ¹³C NMR spectra of compounds **6–8**, the carbon signals of the C=N functional groups are found at δ 156,80 (**6**); 156,61 (**7**); 168,57 (**8**), respectively, and C=O at 163,88 (**6**), 163,86 (**7**), 175,57 (**8**), respectively.

The formation of 2-amino-1-aza-7-phenylaminospiro(4.5)decane-2-ene-10ammonium chloride monohydrate (9) can be represented as the initial formation of O-benzoyl- β -aminopropioamidoxime hydrochloride (A), its dehydration to 1,2,4-oxadiazole (B) and the subsequent proton transfer and nucleophilic attack steps, also involving hydrolysis with the formation of spirocompound 9 and benzoic acid (10) (scheme 3).

Scheme 3

Such course of the acylation reaction under severe conditions – when the reagents are heated at the boiling point of the polar solvent of pyridine is possible.

Formation of analogous structures under milder conditions – at room temperature in ethanol in the preparation of 5-substituted phenyl-3-[(β -thiomorpholin-1-yl)ethyl]-1,2,4-oxadiazoles hydrochlorides and recrystallization from isopropanol of 5-substituted phenyl-3-[β -(4-phenylpiperazin-1-yl)ethyl]-1,2,4-oxadiazoles was detected by us earlier [7, 8].

In the IR spectrum of the chloride hydrate of the spiropyrazolinium compound **9**, there are bands of characteristic valence vibrations of the bonds $v_{C=N}$ and $v_{C=C}$ at 1644 and 1600 cm⁻¹, respectively. In the ¹H NMR spectrum of the spiropyrazolinium compound **9**, the triplet signals of α -CH₂ and β -CH₂ groups with an intensity of two protons are at δ 3,19 and 3,98 ppm; the signal of the amino group of pyrazolinium ring with an intensity of two protons is present at δ 7,53 ppm.

The carbon atom signal of the C=N bond of the compound **9** in the ¹³C NMR spectrum is observed at δ 169,11 ppm. Benzoic acid **10** was isolated during the treatment of the reaction mixture described in the experimental part. Its physico-chemical and spectral characteristics correspond to tabular data.

 β -(Thiomorpholin-1-yl)propioamidoxime (5) reacts with two equivalents of benzoyl chloride in boiling pyridine with a regiospecific formation of the monoacylation product at the oxygen atom of the amidoxime group, O-benzoyl- β -(thiomorpholin-1-yl)propioamidoxime hydrochloride (11). Compound 11 obtained by monoacylation of β -(thiomorpholin-1-yl)propioamidoxime (5) at room temperature in chloroform was described by us earlier [9]. **Conclusion.** Thus, the interaction of β -aminopropioamidoximes with a double excess of benzoyl chloride in boiling pyridine instead of the expected isoxazoles yielded a set of acylation products: N,O-diacylated β -aminopropio-amidoxime dihydrochlorides, spiropyrazolinium compound hydrochloride, and O-acylation hydrochloride. The ambiguous direction of the reaction was obviously connected with the electronic influence of the β -aminoheterocyclic substituent and the possibility of thermodynamically light rearrangements of the initially formed products [10].

The research was carried out according to the scientific and technical program No. BR05234667 within the framework of program-targeted financing CS MES RK.

REFERENCES

[1] Kayukova L.A. Chemistry of azometines of 2-substituted cyclohehanons, β -aminopropioamidoximes and α -chloro- α -isonitrosoketones; their anti-tuberculosis, anti-arithmic, local-anaesthetic and other properties: Author's Abstract of a Doctoral Dissertation in Chemical Sciences. Almaty: JSC «A.B. Bekturov Institute of Chemical Sciences», 2005. 53 p.

[2] Kayukova L.A., Praliev K.D., Akhelova A.L., Kemel'bekov U.S., Pichkhadze G.M., Mukhamedzhanova G.S., Kadyrova D.M., Nasyrova S.R. Local anesthetic activity of new amidoxime derivatives // Pharmaceutical Chemistry Journal. 2011. Vol. 45, N 8. P. 468-471. (Russian Original: Vol. 45, N 8. P. 30-32).

[3] Vakhitov T.R., Veretennikov E.A., Shtabova O.V. Formation of an isoxazole ring from phenylacetic acid amidoximes // Chemistry of Heterocyclic Compounds. 2007. Vol. 43, N 1. P. 118-119. (Russian Original: Vol. 43, N 1. P. 134-135).

[4] WHO Model list of Essential Medicines 18th edition. April 2013.

[5] Mashkovskii M.D. Medications. M.: Publishing Ltd New Wave, 2002. Vol. II. P. 282. (Russian).

[6] Greenwood D. Antimicrobial Drugs. Chronicle of a twentieth century medical triumph. London: Oxford University Press US, 2008. 429 p.

[7] Kayukova L.A., Orazbaeva M.A., Gapparova G.I., Beketov K.M., Espenbetov A.A., Faskhutdinov M.F., Tashkhodjaev B.T. Rapid acid hydrolysis of 5-aryl-3-(β-thiomorpholinoethyl)-1,2,4-oxadiazoles // Chem. Heterocycl. Compd. 2010. Vol. 46. P. 879-886. [Russian Original: 2010. Vol. 46. P. 1086-1096.]

[8] Beketov K.M., Kayukova L.A., Praliyev K.D., Baitursunova G.F. Variety of Boulton-Katritzky rearrangement on the sample of $3-\beta$ -(4-phenylpiperazin-1-yl)-5-phenyl-1,2,4-oxadiazole // Chemical Journal of Kazakhstan. 2011. N 4. P. 14–19. (Russian).

[9] Kayukova L.A., Orazbaeva M.A. Synthesis of β -(thiomorpholin-1-yl) propionitrile and amidoxime; preparation of O-aroyl- β -(thiomorpholin-1-yl) propioamidoximes as potential antituberculous agents // Bulletin of NAS RK. Series of Chemistry and Technology Sciences. 2007. N 5. P. 37-42.

[10] Kayukova, L.A., Imanbekov K.I., Praliyev K.D. Evaluation of thermodynamic stability of 5-aryl-3-[β -(thiomorpholin-1-yl) and β -(4-phenylpyperazin-1-yl)]ethyl-1,2,4-oxadiazoles and spiropyrazolinium compounds in Boulton-Katritzky rearrangement // Chemical Journal of Kazakhstan. 2014. N 2. P. 208–212. (Russian).

[11] Gordon A.J., Ford R.A. The Chemist's Companion. A Handbook of Practical Data, Techniques, and References. M.: Mir, 1976. P. 442-443.

[12] Innovation Patent of the Republic of Kazakhstan N28057 / Kayukova L.A., Praliyev K.D., Dusembaeva G.T. A process for the preparation of β -(morpholin-1-yl)propioamidoxime. // Publ. 25.12.2013. Byul. Izobret. of the Republic of Kazakhstan. N 12; https://gosreestr.kazpatent.kz (Russian).

[13] Innovation Patent of the Republic of Kazakhstan № 28453 / Kayukova L.A., Praliyev K.D., Dusembaeva G.T., Uzakova A.B. A process for the preparation of β-(piperidin-1-yl)pro-

pioamidoxime // Publ. 15.05.2014. Byul. Izobret. of the Republic of Kazakhstan. N 5; https://gosreestr.kazpatent.kz Russian

[14] Akhelova A.L. β -Aminopropioamidoximes as N,O-nucleophiles in the reactions with acylchlorides, α -halogenketones and propargyl haloids; biological properties of the products: Author's Abstract of a Candidate Dissertation in Chemical Sciences. Almaty: JSC «A.B. Bekturov Institute of Chemical Sciences», 2005. 25 p. (Russian).

[15] Orazbaeva M.A. Products of O-aroylation, propargylation and heterocyclization of β -aminopropioamidoximes; their antitubercular properties: Author's Abstract of a Candidate Dissertation in Chemical Sciences. Almaty: JSC «A.B. Bekturov Institute of Chemical Sciences», 2008. 25 p. (Russian).

[16] Rabinovich V.A., Khavin Z.Ya. Brief Chemical Reference Book, 2nd. Ed., Revised and Updated. L.: Chemistry Publishers, 1978. P. 131. (Russian).

Резюме

Л. А. Каюкова, К. Д. Пралиев, Г. Т. Дюсембаева, К. Акатан, Е. Шаймардан, С.К. Кабдрахманова

β-АМИНОПРОПИОАМИДОКСИМДЕРДІ ПИРИДИНДЕ АРТЫҚ БЕНЗОИЛИРЛЕУ КЕЗІНДЕ 1,3,5-ОРЫНБАСҚАН ИЗОКСАЗОЛДАРДЫ СИНТЕЗДЕУ

β-Аминопропиоамидоксимдердің шамадан тыс ацелирленуі (β-аминотоп: пиперидин-1, морфолин-1, бензимидазол-1, 4-фенилпиперазин-1, тиоморфолин-1) еріткіштің қайнау нүктесінде 4–8 сағат ішінде пиридиннің бензоил хлоридінің қос тотығымен көбеюімен жүзеге асырылды. Пиперидин, морфолин және безимидазол амидоксимі жағдайында N, О-дибензоил-β-аминопропиоамидоксим дихидрохлоридтері ерекше өнім болып табылады; тиісінше, хлоридті гидрат спиропиразолин қосылысының және бензой қышқылы және О-бензоил-β-(тиоморфолин-1-ил)пропиоамидоксим гидрохлоридтеріне субстраттар ретінде β-(4-фенилпипиразин-1-ил)пропиоамидоксим және β-(тиоморфолин-1 -ил)пропиоамидоксимдер пайдаланылады.

Түйін сөздер: β-Аминопропиоамидоксимдер, пиридиннің артық ациляциясы, бензойл хлориді, ИК-спектроскопия, ¹Н и ¹³С ЯМР спектроскопиясы.

Резюме

Л. А. Каюкова, К. Д. Пралиев, Г. Т. Дюсембаева, К. Акатан, Е. Шаймардан, С.К. Кабдрахманова

СИНТЕЗ 1,3,5-ЗАМЕЩЕННЫХ ИЗОКСАЗОЛОВ ПРИ ИЗБЫТОЧНОМ БЕНЗОИЛИРОВАНИИ β-АМИНОПРОПИОАМИДОКСИМОВ В ПИРИДИНЕ

Избыточное ацилирование β-аминопропиоамидоксимов (β-аминогруппа: пиперидин-1-ил, морфолин-1-ил, бензимидазол-1-ил, 4-фенилпиперазин-1-ил, тиоморфолин-1-ил) проведено при двукратном избытке бензоилхлорида в пиридине при температуре кипения растворителя в течение 4–8 ч. Выделенными продуктами являются дигидрохлориды N,O-дибензоил-β-аминопропиоамидоксимов в случае пиперидинового, морфолинового и безимидазольного амидоксима; гидрат хлорида спиропиразолиниевого соединения и бензойная кислота и гидрохлорид О-бензоил-β-(тиоморфолин-1-ил)пропиоамидоксима при использовании в качестве субстратов β-(4-фенилпиперазин-1-ил)пропиоамидоксима и β-(тиоморфолин-1-ил)пропиоамидоксима, соответственно.

Ключевые слова: β-Аминопропиоамидоксимы, избыточное ацилирование в пиридине, хлористый бензоил, ИК-спектроскопия, спектроскопия ¹H и ¹³C ЯМР.