ЕҢБЕК ҚЫЗЫЛ ТУ ОРДЕНДІ «Ә. Б. БЕКТҰРОВ АТЫНДАҒЫ ХИМИЯ ҒЫЛЫМДАРЫ ИНСТИТУТЫ» АКЦИОНЕРЛІК ҚОҒАМЫ

ҚАЗАҚСТАННЫҢ Химия Журналы

Химический Журнал Казахстана

CHEMICAL JOURNAL of KAZAKHSTAN

АКЦИОНЕРНОЕ ОБЩЕСТВО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ «ИНСТИТУТ ХИМИЧЕСКИХ НАУК им. А. Б. БЕКТУРОВА»

4 (72)

ОКТЯБРЬ – ДЕКАБРЬ 2020 г. ИЗДАЕТСЯ С ОКТЯБРЯ 2003 ГОДА ВЫХОДИТ 4 РАЗА В ГОД

> АЛМАТЫ 2020

UDK 665.753.4; 54-44

К. М. УМБЕТКАЛИЕВА^{1,2}, Г. К. ВАСИЛИНА^{1,2}, А. К. АБДРАСИЛОВА¹, А. Р. ХАЙЫРГЕЛЬДИНОВА², Т. К. ВАСИЛИНА², Т. Ш. ДОСМАИЛ²

¹Казахский национальный университет им. аль-Фараби, Алматы, Республика Казахстан; ²НИИ Новых химических технологии и материалов, Алматы, Республика Казахстан

ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ И КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ КОМПОЗИТОВ НА ОСНОВЕ МЕЗОПОРИСТЫХ АЛЮМОСИЛИКАТОВ

Аннотация. В статье был синтезирован мезопористый алюмосиликат типа Al-HMS и использован в качестве кислотного носителя для Ni-Mo-содержащих катализаторов. Физико-химические характеристики синтезированных образцов были изучены методами низкотемпературной адсорбции/десорбции азота, БЭТ и рентгеновской малоугловой дифракции. Каталитическая активность Ni/Al-HMS-H-bentonite и Mo/Al-HMS-H-bentonite была исследована в процессе превращения н-гексадекана. Показано, что наибольшей активностью и селективностью в процессе гидроизомеризации н-гексадекана при оптимальных условиях (320 °C, 1 ч⁻¹) обладает образец промотированный молибденом катализатор на основе Al-HMS. Выход изопарафинов на этом образце составляет 42 масс.% при селективности 91 %

Ключевые слова: мезопористый алюмосиликат, катализатор, гидроизомеризация, депарафинизация, высшие н-парафины, темплат.

В связи с истощением запасов средних и лёгких нефтей, количество которых, по прогнозам, будет недостаточным для удовлетворения требуемого спроса к 2035 г., перед мировым сообществом остро стоит вопрос качественной переработки тяжелой сырой нефти и ее производных [1, 2]. Это особенно актуально для стран с наибольшими запасами парафинистых нефтей, в число которых входит и Казахстан. Парафинистые нефти Казахстана относятся к подклассу высокопарафинистых нефтей (10-20 %) с повышенной вязкостью (35-100·10⁻⁴ м²/с) и средней плотностью (840–880 кг/м³) [3]. Таким образом, в условиях растущего во всем мире интереса к устойчивым и альтернативным источникам энергии, приоритетным направлением является поиск эффективных и более экономичных способов преобразования молекул больших размеров, входящих в состав сырой нефти, в их изомеры, обладающие лучшими эксплуатационными свойствами [4].

Процесс гидроизомеризации, который находит все большее применение, является одним из способов снижения температуры застывания дизельного топлива, среди которых также – смешивание с керосиновой фракцией, введение депрессивных присадок [5, 6]. Широкое распространение для процесса гидроизомеризации н-алканов получили бифункциональные катализаторы. Наличие в них металлических и кислотных центров, соответственно, позволяет обеспечивать функцию гидрирования/дегидрирования для насыщения/генерации алкеновых интермедиатов и кислотную функцию – скелетную перегруппировку по карбений-ионному механизму [7-9]. На селективность процесса гидроизомеризации н-алканов влияют несколько факторов – гидро/дегидрирующая активность металла, баланс металлокислотных центров, пористость структуры и тип носителя [10-13]. Размеры пор катализатора в мезопористом диапазоне уменьшают диффузионные ограничения для объемных молекул, сохраняя при этом определенный уровень каталитической конверсионной активности [4]. Было также установлено [14], что малый размер пор (0,45×0,52 нм) некоторых молекулярных сит не только ограничивает диффузию молекул, но и ускоряет вторичный крекинг изомерных продуктов. В связи с этим, мезопористые алюмосиликаты как кислотные компоненты бифункциональных катализаторов гидроизомеризации представляют особый интерес, поскольку их размер пор больше, чем размер большинства молекул, входящих в состав сырья [15]. В качестве металлических центров, в основном используют платину и палладий, что не применимо к казахстанской нефти с высоким содержанием контактных ядов. Для решения этого вопроса предлагается использовать катализаторы, промотированные биметаллами, такими как Ni-Mo. Это связано с тем, что катализаторы на их основе обладают высокой гидрирующей активностью даже при значительном содержании серы в сырье.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза мезоструктурированных алюмосиликатов с высоким содержанием алюминия использован метод сополиконденсации тетраэтилортосиликата и вторичного бутоксида алюминия [16, 17]. В качестве структурообразующего темплата был использован гексадециламин. Полученный образец стал кислотным компонентов носителя бифункционального катализатора, в качестве связующего агента использовался активированный бентонит Таганского месторождения. Бифункциональные моно-металлические катализаторы, 5% Ni/Al-HMS-H-bentonite и 1% Mo/Al-HMS-H-bentonite, были приготовлены с использованием метода влажной пропитки.

Пористая структура синтезированных образцов и значения площади поверхности БЭТ изучены с помощью стандартного метода адсорбции/десорбции азота с использованием сорбтометра Quanta ChromeAutosorb-6.

Упорядоченность пористой структуры синтезированных материалов анализировалась при использовании метода рентгеновского малоуглового рассеяния. Ренгенограммы были сняты на дифрактометре Rigaku D/MAX 2200 с источником радиации Cu K.

Для изучения активности синтезированных катализаторов в качестве модельного соединения использован н-гексадекан, поскольку он входит в состав дизельной фракции.

Процесс каталитической конверсии н-гексадекана проводили на лабораторной установке с неподвижным слоем катализатора под давлением водорода в интервале температур 280-340 °C; скорость подачи сырья составляла 1 ч⁻¹, соотношение водород/сырье составляло 1000 нм³/м³, давление водорода в реакторе составляло 3 МПа. Анализ жидких продуктов проводился на хроматографе «Кристалл 5000» с линейным программированием температуры от 35 до 250 °C.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Физико-химические характеристики синтезированных образцов на основе мезопористого алюмосиликата приведены на рисунках 1–3 и в таблице 1.

Рисунок 2 – Распределение пор по размерам образцов Al-HMS, Ni/HMS-H-bentonite и Mo/HMS-H-bentonite

Образцы	Удельная поверхность, м ² /г	Объем пор, см ³ /г	Средний диаметр пор, нм
Al-HMS	511.0	1.469	3.82
Ni/Al-HMS-H-бентонит	151.7	0.3565	1.67
Mo/Al-HMS -H-бентонит	283.6	0.2166	2.17

Таблица 1 – Физические свойства образцов

Изотермы адсорбции/десорбции азота на всех исследованных образцах (рисунок 1) относятся к типу IV по классификации Брунауэра, Эммета и Теллера, наличие в нем петли гистерезиса, а также узкое распределение пор по размерам указывают на упорядоченную структуру пор в мезопористом диапазоне [18]. Как следует из данных, приведенных на рисунке 1, изотерма адсорбции/десорбции азота для образца Al-HMS характеризуется более широкой петлей гистерезиса по сравнению с образцами Ni/Al-HMS-H-бентонит и Mo/Al-HMS-H-бентонит, которые вероятно обусловлены наличием более крупных пор в Al-HMS. Промотирование образцов катализаторов на основе мезопористого алюмосиликата никелем и молибденом приводит к значительным изменениям структурных характеристик катализатора (рисунок 2). На кривой распределения пор по размерам по эффективным диаметрам наблюдаются три максимума, один из которых соответствует мезопористому алюмосиликату, второй – бентониту и третий – промотирующей добавке. Площадь поверхности, средний диаметр пор и объем пор снизились с 511 до 151,7 м²/г, с 3,82 до 2,17 нм и с 1,47 до 0,21 см³/г, соответственно, в результате пропитки Ni и Мо (таблица 1). Эти результаты показывают, что большая часть Ni и Мо проникла в мезопоры и осаждена на поверхности пор этого катализатора. Этому также способствовало смещение распределения пор по размерам в сторону более мелких пор в результате пропитки Ni и Mo (рисунок 2).

Для подтверждения мезопористости и упорядоченности пористой структуры синтезированных материалов использован метод рентгеновского рассеяния.

На рисунке 3 представлена рентгенограмма малоуглового рассеяния мезопористого образца Al-HMS, согласно которому присутствие выраженного пика в области значений углов 2θ 2,1° свидетельствует о наличии мезопористой структуры. Для образцов Al-HMS и Mo/HMS-H-bentonite пик интенсивности находится в области 2,1°, а для Ni/HMS-H-bentonite – 2,3°, что при длине волны используемого излучения соответствует межплоскостным расстояниям 4,2, и 3,9 нм, соответственно.

Каталитическая конверсия н-гексадекана на катализаторах Ni/Al-HMS-H-bentonite (a) и Mo/ Al-HMS-H-bentonite (b) представлена на рисунке 4.

Рисунок 3 – Рентгенограмма малоуглового рассеяния мезопористого алюмосиликата Al-HMS

Рисунок 4 – Каталитическая активность Ni/ Al-HMS-H-bentonite (a) и Mo/Al-HMS-H-bentonite (б) в процессе превращения н-гексадекана

Из полученных экспериментальных данных видно, что в условиях низкотемпературного алюмосиликатного катализа (320 °C) основным направлением превращения гексадекана является процесс изомеризации. Следует также отметить, что изомерные структуры гексадекана получаются за счет процесса изомеризации, без участия крекинга. При повышении температуры от 320 до 340 °C на ряду с реакциями изомеризации, протекают также реакции крекинга. Наибольший выход целевых продуктов (изо-C₁₆H₃₄) при гидроизомеризации н-гексадекана наблюдается на образце катализатора Mo/Al-HMS-H бентонит при температуре 320 °C и составляет 42 масс. % при селективности 91 %. Немного низкая активность образца Ni/Al-HMS-H-bentonite в исследуемом процессе вероятно обусловлена низкой кислотностью, необходимой для проведения гидроизомеризации н-гексадекана [19, 20].

Таким образом, был синтезирован упорядоченный мезопористый алюмосиликат методом сополиконденсации. Наличие мезопористой и упорядоченной структуры в алюмосиликате и катализаторах на его основе подтверждено данными низкотемпературной адсорбции/десорбции азота и дифракции рентгеновских лучей. Каталитическая активность Ni/Al-HMS-H-bentonite и Mo/Al-HMS-H-bentonite исследована в процессе превращения н-гексадекана. Показано, что наибольшей активностью и селективностью в процессе гидроизомеризации н-гексадекана при оптимальных условиях (320 °C, 1 ч⁻¹) обладает образец промотированный молибденом катализатор на основе Al-HMS. Выход изопарафинов на этом образце составляет 42 масс.% при селективности 91 %

Настоящая работа выполняется в рамках проекта AP08052032 «Разработка технологии получения новых катализаторов на основе мезопористых алюмосиликатов для производства дизельного топлива с улучшенными низкотемпературными свойствами».

ЛИТЕРАТУРА

[1] Wang B. Co-hydrotreating of algae and used engine oil for the direct production of gasoline and diesel fuels or blending components / B. Wang, P.G. Duan, Y.P. Xu, F. Wang, X.L. Shi, J. Fu, X.Y. Lu // Energy. – 2017. – Vol. 136. – P. 151-162.

[2] Hart A. Down-hole heavy crude oil upgrading by CAPRI: effect of hydrogen and methane gases upon upgrading and coke formation / A. Hart, G. Leeke, M. Greaves // J. Wood Fuel. – 2014. – Vol. 119. – P. 226-235.

[3] Байдельдина О.Ж. Особенности строения и свойств парафинистых нефтей Казахстана, влияющие на эффективность мероприятий при борьбе с парафиноотложениями / О.Ж. Байдельдина, Н.Г. Дарибаева, Б.М. Нуранбаева // Современные наукоемкие технологии. – 2015. – № 4. – С. 100-106.

[4] Zhang Y. Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts: Effects of the MCM-41 incorporation with Y zeolite / Y. Zhang, D. Liu, B. Lou, R. Yu, Zh. Men, M. Li, Zh. Li // Fuel. – 2018. – Vol. 226. – P. 204-212.

[5] Dik P.P. Composition of stacked bed for VGO hydrocracking with maximum diesel yield / P.P. Dik, O.V. Klimov, G.I. Koryakina, K.A. Leonova, V.Yu. Pereyma, S.V. Budukva, E.Yu. Gerasimov, A.S. Noskov // Catal. Today. – 2014. – Vol. 220-222. – P. 124-132.

[6] Coonradt H.L. Mechanism of Hydrocracking. Reactions of Paraffins and Olefins / H.L. Coonradt, W.E. GarwoodInd // Eng. Chem. Process Des. Dev. – 1964. – Vol. 3 (1). – P. 38-45.

[7] Park K-C. Comparison of Pt/zeolite catalysts for n-hexadecane hydro-isomerization / K-C. Park, S-K. Ihm // Appl Catal, A. – 2000. – Vol. 203. – P. 201-209.

[8] Yu F. Mechanistic pathways for olefin hydro-isomerization and aromatization in fluid catalytic cracking gasoline hydro-up- grading / F. Yu, J. Yin, S. Gang, H. Liu, X. Bao // Energy Fuels. – 2009. – Vol. 23. – P. 3016-3023.

[9] Claude MC. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst / MC Claude, JA Martens // J Catal. – 2000. – Vol. 190. – P. 39–48. [10] Weitkamp J. Factors influencing the selectivity of hydrocracking in zeolites / J. Weitkamp, S. Ernst, D. Barthomeuf, E.G. Derouane, W. Holderch // Guidelines for mastering the properties of molecular sieves. – New York, 1990. – 343 p.

[11] Girgis M.J. Impact of catalyst metal-Acid balance in n-hexadecane hydroisomerisation and hydrocracking / M.J. Girgis, Y.P. Tsao // Ind. Eng. Chem. Res. – 1996. – Vol. 35. – P. 386.

[12] Lopatkin S. V. Isomerization of normal hexadecane using bifunctional catalysts in the presence of aromatics / S. V. Lopatkin, K.G. Ione // Heterogeneous catalysis, Proceedings of the 9th International Symposium. – Varna, Bulgaria, 2000. – 847 p.

[13] Alvarez F. Hydroisomerization and hydrocracking of alkanes. Influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts / F. Alvarez, F. R. Ribeiro, G. Perot, C. Thomazeau, M. Guisnet // J. Catal. – 1996. – Vol. 162. – P. 179.

[14] Chen C.Y. Characterization of shape selective properties of zeolites via hydroisomerization of n-hexane / C.Y. Chen, X. Ouyang, S.I. Zones, S.A. Banach, S.A. Elomari, T.M. Davis, A.F. Ojo // Microporous and Mesoporous Materials. – 2012. – Vol. 164. – P. 71-81.

[15] Karakhanov E.A. Hydroisomerization of n-dodecane on bifunctional catalysts containing mesoporous aluminosilicates // E.A. Karakhanov, S.V. Kardashev, A.L. Maksimov, S.V. Baranova, A.B. Kulikov, V.A. Ostroumova, S.I. Shirokopoyas, S.V. Lysenko // Petroleum Chemistry. – 2012. – Vol. 52 (4). – P. 228-232.

[16] Chiranjeevi T. Synthesis and characterization of acidic properties of Al-HMS materials of varying Si/Al ratios / T. Chiranjeevi, G. MuthuKumaran, J.K.Gupta, G. MuraliDha // ThermochimicaActa. – 2006. – Vol. 443. – P. 87-92.

[17] Vassilina G. Synthesis of Mesoporous Alumosilicates / G. Vassilina, R. Moisa, T. Abildin, A. Khaiyrgeldinova, K. Umbetkalieva // 2016 International Conference on Computational Modeling, Simulation and Mathematics. – Bangkok, Thailand, 2016. – P. 308-311.

[18] Huirache-Acuna R. Comparison of the morphology and HDS activity of ternary Ni(Co)-Mo-W catalysts supported on Al-HMS and Al-SBA-16 substrates / R.Huirache-Acuna, B. Pawelec, C.V. Loricera, E.M.Rivera-Munoz, R. Nava, B. Torres, J.L.G. Fierro // Appl.Catal.A. – 2012. – Vol. 125. – P. 473-485.

[19] Cordoba G. Study of xerogel–glass transition of CuO/SiO₂ / G. Gordoba, R. Arroyo, J.L.G. Fierro, M. Viniegra // J. Solid State Chem. – 1996. – Vol. 123. – P. 93-99

[20] Mile B. The location of nickel oxide and nickel in silica-supported catalysts: two forms of «NiO» and the assignment of temperature-programmed reduction profiles /B. Mile, D. Stirling, M.A. Zammitt, A. Lovell, M.J. Webb // J. Catal. – 1998. – Vol. 114. – P. 217-227.

REFERENCES

[1] Wang B. Co-hydrotreating of algae and used engine oil for the direct production of gasoline and diesel fuels or blending components / B. Wang, P.G. Duan, Y.P. Xu, F. Wang, X.L. Shi, J. Fu, X.Y. Lu // Energy. 2017. Vol. 136. P. 151-162.

[2] Hart A. Down-hole heavy crude oil upgrading by CAPRI: effect of hydrogen and methane gases upon upgrading and coke formation / A. Hart, G. Leeke, M. Greaves // J. Wood Fuel. 2014. Vol. 119. P. 226-235.

[3] Baydeldina O.Zh. Osobennosti stroeniya i svoystv parafinistyih neftey Kazahstana, vliyayuschie na effektivnost meropriyatiy pri borbe s parafinootlozheniyami / O.Zh. Baydeldina, N.G. Daribaeva, B.M. Nuranbaeva // Sovremennyie naukoemkie tehnologii. 2015. N 4. P. 100-106.

[4] Zhang Y. Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts: Effects of the MCM-41 incorporation with Y zeolite / Y. Zhang, D. Liu, B. Lou, R. Yu, Zh. Men, M. Li, Zh. Li // Fuel. 2018. Vol. 226. P. 204-212.

[5] Dik P.P. Composition of stacked bed for VGO hydrocracking with maximum diesel yield / P.P. Dik, O.V. Klimov, G.I. Koryakina, K.A. Leonova, V.Yu. Pereyma, S.V. Budukva, E.Yu. Gerasimov, A.S. Noskov // Catal. Today. 2014. Vol. 220-222. P. 124-132.

[6] Coonradt H.L. Mechanism of Hydrocracking. Reactions of Paraffins and Olefins / H.L. Coonradt, W.E. GarwoodInd // Eng. Chem. Process Des. Dev. 1964. Vol. 3(1). P. 38-45.

[7] Park K-C. Comparison of Pt/zeolite catalysts for n-hexadecane hydro-isomerization / K-C. Park, S-K. Ihm // Appl Catal, A. 2000. Vol. 203. P. 201-209.

[8] Yu F. Mechanistic pathways for olefin hydro-isomerization and aromatization in fluid catalytic cracking gasoline hydro-up- grading / F. Yu, J. Yin, S. Gang, H. Liu, X. Bao // Energy Fuels. 2009. Vol. 23. P. 3016-3023.

[9] Claude MC. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst / MC Claude, JA Martens // J Catal. 2000. Vol. 190. P. 39-48.

[10] Weitkamp J. Factors influencing the selectivity of hydrocracking in zeolites / J. Weitkamp, S. Ernst, D. Barthomeuf, E.G. Derouane, W. Holderch // Guidelines for mastering the properties of molecular sieves. New York, 1990. 343 p.

[11] Girgis M.J. Impact of catalyst metal-Acid balance in n-hexadecane hydroisomerisation and hydrocracking / M.J. Girgis, Y.P. Tsao // Ind. Eng. Chem. Res. 1996. Vol. 35. P. 386.

[12] Lopatkin S. V. Isomerization of normal hexadecane using bifunctional catalysts in the presence of aromatics / S. V. Lopatkin, K.G. Ione // Heterogeneous catalysis, Proceedings of the 9th International Symposium. Varna, Bulgaria, 2000. 847 p.

[13] Alvarez F. Hydroisomerization and hydrocracking of alkanes. Influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts / F. Alvarez, F. R. Ribeiro, G. Perot, C. Thomazeau, M. Guisnet // J. Catal. 1996. Vol. 162. P. 179.

[14] Chen C.Y. Characterization of shape selective properties of zeolites via hydroisomerization of n-hexane / C.Y. Chen, X. Ouyang, S.I. Zones, S.A. Banach, S.A. Elomari, T.M. Davis, A.F. Ojo // Microporous and Mesoporous Materials. 2012. Vol. 164. P. 71-81.

[15] Karakhanov E.A. Hydroisomerization of n-dodecane on bifunctional catalysts containing mesoporous aluminosilicates // E.A. Karakhanov, S.V. Kardashev, A.L. Maksimov, S.V. Baranova, A.B. Kulikov, V.A. Ostroumova, S.I. Shirokopoyas, S.V. Lysenko // Petroleum Chemistry. 2012. Vol. 52(4). P. 228 - 232.

[16] Chiranjeevi T. Synthesis and characterization of acidic properties of Al-HMS materials of varying Si/Al ratios / T. Chiranjeevi, G. MuthuKumaran, J.K.Gupta, G. MuraliDha // ThermochimicaActa. 2006. Vol. 443. P. 87-92.

[17] Vassilina G. Synthesis of Mesoporous Alumosilicates / G. Vassilina, R. Moisa, T. Abildin, A. Khaiyrgeldinova, K. Umbetkalieva // 2016 International Conference on Computational Modeling, Simulation and Mathematics. Bangkok, Thailand, 2016. P. 308-311.

[18] Huirache-Acuna R. Comparison of the morphology and HDS activity of ternary Ni(Co)-Mo-W catalysts supported on Al-HMS and Al-SBA-16 substrates / R.Huirache-Acuna, B. Pawelec, C.V. Loricera, E.M.Rivera-Munoz, R. Nava, B. Torres, J.L.G. Fierro // Appl.Catal.A. 2012. Vol. 125. P. 473-485.

[19] Cordoba G. Study of xerogel–glass transition of CuO/SiO₂ / G. Gordoba, R. Arroyo, J.L.G. Fierro, M. Viniegra // J. Solid State Chem. 1996. Vol. 123. P. 93-99

[20] Mile B. The location of nickel oxide and nickel in silica-supported catalysts: two forms of «NiO» and the assignment of temperature-programmed reduction profiles /B. Mile, D. Stirling, M.A. Zammitt, A. Lovell, M.J. Webb // J. Catal. 1998. Vol. 114. P. 217-227.

Резюме

К. М. Умбеткалиева, Г. К. Василина, А. К. Абдрасилова, А. Р. Хайыргельдинова, Т. К. Василина, Т. Ш. Досмаил

МЕЗОКЕУЕКТІ АЛЮМОСИЛИКАТТАР НЕГІЗІНДЕГІ КОМПОЗИТТЕРДІҢ ФИЗИКА-ХИМИЯЛЫҚ СИПАТТАМАЛАРЫ ЖӘНЕ КАТАЛИТИКАЛЫҚ БЕЛСЕНДІЛІГІ

Мақалада Al-HMS типті мезокеуекті алюмосиликат синтезделіп, Ni-Mo құрамды катализаторлар үшін қышқыл тасымалдаушы ретінде пайдаланылды. Синтезделген үлгілердің физика-химиялық сипаттамалары төмен температуралы азот адсорбциясы/десорбциясы, БЭТ және рентгендік төмен бұрышты дифракция әдістерімен зерттелді. Ni/Al-HMS-H-bentonite және Mo/Al-HMS-H-bentonite каталитикалық белсенділіктері н-гексадеканды айналдыру процесінде зерттелді. Оңтайлы жағдайларда (320 °C, 1 сағ⁻¹) н-гексадеканды гидроизомерлеу процесінде ең жоғары белсенділік пен селективтілікті Al-HMS негізіндегі молибденмен промотирленген катализатор үлгісі екендігі көрсетілген. Бұл үлгіде изопарафиндердің шығуы 42 масс. %, ал селективтілігі 91 % құрайды.

Түйін сөздер: мезокеуекті алюмосиликат, катализатор, гидроизомерлеу, депарафиндеу, жоғары н-парафиндер, темплат.

Summary

K. M. Umbetkaliyeva, G. K. Vassilina, A. K. Abdrassilova, A. R. Khaiyrgeldinova, T. K. Vassilina, T. Sh. Dosmail

PHYSICAL AND CHEMICAL CHARACTERISTICS AND CATALYTIC ACTIVITY OF COMPOSITES BASED ON MESOPOROUS ALUMINOSILICATES

In the article, a mesoporous aluminosilicate of the Al-HMS type was synthesized and used as an acid support for Ni-Mo-containing catalysts. The physicochemical characteristics of the synthesized samples were studied by low-temperature nitrogen adsorption/desorption, BET, and X-ray small-angle diffraction. The catalytic activity of Ni/Al-HMS-H-bentonite and Mo/Al-HMS-H-bentonite was investigated during the conversion of n-hexadecane. It has been shown that the highest activity and selectivity in the process of hydroisomerization of n-hexadecane under optimal conditions ($320 \,^{\circ}$ C, $1 \, h^{-1}$) is possessed by a sample of a catalyst promoted with molybdenum based on Al-HMS. The yield of isoparaffins on this sample is 42 wt% with a selectivity of 91%.

Keywords: mesoporous aluminosilicate, catalyst, hydroisomerization, dewaxing, higher n-paraffins, template.